Advertisements
Advertisements
Question
Integrate the function in x cos-1 x.
Solution
Let `I = int x cos^-1 x dx = int cos^-1 x*x dx`
`= cos^-1 x* int x dx - int [d/dx (cos^-1 x) int x dx] dx`
`= cos^-1 x (x^2/2) - int (-1)/ sqrt (1 - x^2) (x^2/2) dx`
`= x^2/2 cos^-1 x + 1/2 int x^2/ sqrt (1 - x^2) dx`
∴ `I = x^2/2 cos^-1 x+ 1/2 I_1` ....(i)
Where `I_1 = int x^2/ sqrt (1 - x^2) dx`
Put x = cos θ
⇒ dx = -sinθ dθ
∴ `I_1 = int (cos^2 theta (-sin theta))/sqrt (1 - cos^2 theta) d theta`
`= - int cos^2 theta d theta = - 1/2 int (1 + cos 2 theta) d theta`
`= -1/2 (theta + (sin 2 theta)/2) + C`
`= -1/2 (theta + 1/2 xx 2 sin theta cos theta) + C`
`= - 1/2 (theta + cos theta sqrt (1 - cos^2 theta)) + C`
`= - 1/2 (cos^-1 x + x sqrt (1 - x^2)) + C` ....(ii)
From (i) and (ii), we get
`I = (2x^2 - 1) (cos^-1 x)/4 - x/4 sqrt (1 - x^2) + C`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x sin x.
Integrate the function in x log x.
Integrate the function in x2 log x.
Integrate the function in (x2 + 1) log x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int 1/sqrt(2x^2 - 5) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int(x + 1/x)^3 dx` = ______.
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int 1/sqrt(x^2 - 9) dx` = ______.
`int 1/sqrt(x^2 - a^2)dx` = ______.
Solve: `int sqrt(4x^2 + 5)dx`
`int logx dx = x(1+logx)+c`