Advertisements
Advertisements
Question
Integrate the functions:
`1/(1 - tan x)`
Solution
Let `I = int 1/ (1 - tan x)dx = int 1/ (1 - sin x/ cos x) dx`
`= int cos x/ (cos x - sin x) dx = 1/2 int (2 cos x)/ (cos x - sin x) dx`
`1/2 int ((cos x - sin x) - (-sin x - cos x))/(cos x - sin x)`
`1/2 int 1 dx - 1/2 int (-sin x - cos x)/ (cos x - sin x) dx`
`x/2 - 1/2 int (-sin x - cos x)/ (cos x - sin x) dx + C_1`
`I = x/2 - 1/2 I_1 + C_1` ....(i)
Where, `I_1 = int (-sinx - cos x)/(cos x - sin x) dx`
Put cos x - sin x = t
⇒ (-sin x - cos x) dx = dt
`I_1 = int dt/t = log |t| + C_2`
= log | cos x - sin x| + C2 ...(ii)
From (i) and (ii), we get
⇒ `I = x/2 - 1/2 log |cos x - sin x| + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int 1/(xsin^2(logx)) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int(1 + x + x^2/(2!))dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`