English

Integrate the functions: 11-tanx - Mathematics

Advertisements
Advertisements

Question

Integrate the functions:

`1/(1 - tan x)`

Sum

Solution

Let `I = int 1/ (1 - tan x)dx = int 1/ (1 - sin x/ cos x) dx`

`= int cos x/ (cos x - sin x) dx = 1/2 int (2 cos x)/ (cos x - sin x) dx`

`1/2 int  ((cos x - sin x) - (-sin x - cos x))/(cos x - sin x)`

`1/2 int 1 dx - 1/2 int  (-sin x - cos x)/ (cos x - sin x) dx`

`x/2 - 1/2 int (-sin x - cos x)/ (cos x - sin x) dx + C_1`

`I = x/2 - 1/2 I_1 + C_1`           ....(i)

Where, `I_1 = int (-sinx - cos x)/(cos x - sin x) dx`

Put cos x - sin x = t

⇒ (-sin x - cos x) dx = dt

`I_1 = int dt/t = log |t| + C_2`

= log | cos x - sin x| + C2                    ...(ii)

From (i) and (ii), we get

⇒ `I = x/2 - 1/2 log |cos x - sin x| + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.2 [Page 305]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.2 | Q 33 | Page 305

RELATED QUESTIONS

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int x \sin^3 x\ dx\]

Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate `int(1 + x + x^2/(2!))dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×