Advertisements
Advertisements
Question
Integrate the function in x sec2 x.
Solution
Let `I = int x sec^2 x dx`
Put `u = x, v = sec^2 x`
`therefore int uv dx = u int v dx - int ((du)/dx int v dx) dx`
`= x int sec^2 x dx - int [(d(x))/dx int sec^2 x dx] dx`
`= x tan x - int 1. tan x dx`
`= x tan x + log abs (cos x) + C`
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in `x^2e^x`.
Integrate the function in x sin-1 x.
Integrate the function in x (log x)2.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int(1-x)^-2 dx` = ______
`inte^(xloga).e^x dx` is ______
`int logx dx = x(1+logx)+c`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
The value of `inta^x.e^x dx` equals
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`