English

Integrate the function in x sec2 x. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in x sec2 x.

Sum

Solution

Let `I = int x sec^2 x  dx`

Put `u = x, v = sec^2 x`

`therefore int uv  dx = u int v  dx - int ((du)/dx int v  dx) dx`

`= x int sec^2 x  dx - int [(d(x))/dx  int sec^2  x  dx]  dx`

`= x tan x - int 1. tan x  dx`

`= x tan x + log abs (cos x) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 12 | Page 327

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in `x^2e^x`.


Integrate the function in x sin-1 x.


Integrate the function in x (log x)2.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int cot "x".log [log (sin "x")] "dx"` = ____________.


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int(1-x)^-2 dx` = ______


`inte^(xloga).e^x dx` is ______


`int logx  dx = x(1+logx)+c`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


The value of `inta^x.e^x dx` equals


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×