English

Prove that: ,Ifis an even function,ifis an odd function∫-aaf(x)dx =2∫0af(x)dx,If f(x) is an even function =0,if f(x) is an odd function - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`

Sum

Solution

L.H.S becomes

`int_(-a)^a f(x)  dx = int_(-a)^0 f(x) dx + int_0^a  f(x) dx`   .......(i)

Consider `int_(-a)^0 f(x) dx`

Put x = – t

∴ dx = – dt

When x = – a, t = a

and when x = 0, t = 0

∴ `int_(-a)^0 f(x) dx = int_a^0 f(-t)(-dt)`

= `-int_a^0 f(-t) dt`

= `int_0^a f(-t) dt`    ......`[∵ int_a^b f(x) dx = - int_b^a f(x) dx]`

= `int_0^a f(-x) dx`    ......`[∵ int_a^b f(x) dx = int_a^b f(t) dt]`

Equation (i) becomes

`int_(-a)^a f(x) dx = int_0^a f(-x) dx + int_0^a f(x) dx`

= `int_0^a [f(-x) + f(x)] dx` ......(ii)

Case I:

If f(x) is an even function, then f(– x) = f(x),

Equation (ii) becomes

`int_(-a)^a f(x) dx = 2* int_0^a f(x) dx`

Case II:

If f(x) is an odd function, then f(– x) = – f(x),

Equation (ii) becomes

`int_(-a)^a f(x) dx` = 0

`{:(int_(-a)^a f(x) dx = 2* int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                    = 0",", "if"  f(x)  "is an odd function"):}`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Long Answers III

RELATED QUESTIONS

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×