Advertisements
Online Mock Tests
Chapters
2: Functions
3: Binary Operations
4: Inverse Trigonometric Functions
5: Algebra of Matrices
6: Determinants
7: Adjoint and Inverse of a Matrix
8: Solution of Simultaneous Linear Equations
9: Continuity
10: Differentiability
11: Differentiation
12: Higher Order Derivatives
13: Derivative as a Rate Measurer
14: Differentials, Errors and Approximations
15: Mean Value Theorems
16: Tangents and Normals
17: Increasing and Decreasing Functions
18: Maxima and Minima
19: Indefinite Integrals
20: Definite Integrals
21: Areas of Bounded Regions
22: Differential Equations
23: Algebra of Vectors
24: Scalar Or Dot Product
25: Vector or Cross Product
26: Scalar Triple Product
27: Direction Cosines and Direction Ratios
28: Straight Line in Space
29: The Plane
30: Linear programming
31: Probability
32: Mean and Variance of a Random Variable
33: Binomial Distribution
![RD Sharma solutions for Mathematics [English] Class 12 chapter 1 - Relations RD Sharma solutions for Mathematics [English] Class 12 chapter 1 - Relations - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
Advertisements
Solutions for Chapter 1: Relations
Below listed, you can find solutions for Chapter 1 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.
RD Sharma solutions for Mathematics [English] Class 12 1 Relations Exercise 1.1 [Pages 10 - 11]
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :
R = {(x, y) : x and y work at the same place}
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :
R = {(x, y) : x and y live in the same locality}
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
R = {(x, y) : x is wife of y}
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
R = {(x, y) : x is father of and y}
Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.
Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.
Test whether the following relation R1 is (i) reflexive (ii) symmetric and (iii) transitive :
R1 on Q0 defined by (a, b) ∈ R1 ⇔ a = 1/b.
Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:
R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5
Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:
R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.
Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.
The following relation is defined on the set of real numbers.
aRb if a – b > 0
Find whether relation is reflexive, symmetric or transitive.
The following relation is defined on the set of real numbers.
aRb if 1 + ab > 0
Find whether relation is reflexive, symmetric or transitive.
The following relation is defined on the set of real numbers. aRb if |a| ≤ b
Find whether relation is reflexive, symmetric or transitive.
Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.
Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.
Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?
If A = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?
Give an example of a relation which is reflexive and symmetric but not transitive ?
Give an example of a relation which is reflexive and transitive but not symmetric ?
Give an example of a relation which is symmetric and transitive but not reflexive?
Give an example of a relation which is symmetric but neither reflexive nor transitive?
Give an example of a relation which is transitive but neither reflexive nor symmetric?
Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
Let A = {a, b, c} and the relation R be defined on A as follows: R = {(a, a), (b, c), (a, b)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.
Defines a relation on N :
x > y, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Defines a relation on N :
x + y = 10, x, y∈ N
Determine the above relation is reflexive, symmetric and transitive.
Defines a relation on N :
xy is square of an integer, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Defines a relation on N:
x + 4y = 10, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
RD Sharma solutions for Mathematics [English] Class 12 1 Relations Exercise 1.2 [Pages 26 - 27]
Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.
Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?
Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.
Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.
Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.
Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?
Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.
Let R be the relation defined on the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.
Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.
Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.
If R and S are relations on a set A, then prove that R and S are symmetric ⇒ R ∩ S and R ∪ S are symmetric ?
If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?
If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.
Let C be the set of all complex numbers and C0 be the set of all no-zero complex numbers. Let a relation R on C0 be defined as
`z_1 R z_2 ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .
Show that R is an equivalence relation.
RD Sharma solutions for Mathematics [English] Class 12 1 Relations Exercise 1.3 [Pages 29 - 30]
Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25
If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.
Write the identity relation on set A = {a, b, c}.
Write the smallest reflexive relation on set A = {1, 2, 3, 4}.
If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.
If R is a symmetric relation on a set A, then write a relation between R and R−1.
Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.
If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.
Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.
Define a reflexive relation ?
Define a symmetric relation ?
Define a transitive relation ?
Define an equivalence relation ?
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(x, y) : y is one half of x; x, y ∈ A} is a relation on A, then write R as a set of ordered pairs.
Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.
State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?
Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.
Let R be the equivalence relation on the set Z of the integers given by R = { (a, b) : 2 divides a - b }.
Write the equivalence class [0].
For the set A = {1, 2, 3}, define a relation R on the set A as follows:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
Write the ordered pairs to be added to R to make the smallest equivalence relation.
Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : | a2- b2 | < 8}. Write R as a set of ordered pairs.
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
Write the smallest equivalence relation on the set A = {1, 2, 3} ?
RD Sharma solutions for Mathematics [English] Class 12 1 Relations Exercise 1.4 [Pages 31 - 33]
Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,
(2, 4) ∈ R
(3, 8) ∈ R
(6, 8) ∈ R
(8, 7) ∈ R
If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________
{3, 4, 5}
{0, 3, 4, 5}
{0, ±3, ±4, ±5}
None of these
R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .
Reflexive and transitive
Reflexive and symmetric
Symmetric and transitive
an equivalence relation
The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .
{(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)}
{(2, 2), (3, 2), (4, 2), (2, 4)}
{(3, 3), (4, 3), (5, 4), (3, 4)}
none of these
Let R be the relation over the set of all straight lines in a plane such that l1 R l2 ⇔ l 1⊥ l2. Then, R is _____________ .
Symmetric
Reflexive
Transitive
an equivalence relation
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
reflexive only
symmetric only
transitive only
reflexive and transitive only
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
4
5
6
7
Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.
1
2
3
4
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
reflexive but not symmetric
reflexive and transitive but not symmetric
an equivalence relation
none of the these
If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .
{1, 4, 6, 9}
{4, 6, 9}
{1}
none of these
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
{2, 3, 5}
{3, 5}
{2, 3, 4}
{2, 3, 4, 5}
A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?
(2 + 3 i) ϕ 13
3 ϕ (−3)
(1 + i) ϕ 2
i ϕ 1
Let R be a relation on N defined by x + 2y = 8. The domain of R is _______________ .
{2, 4, 8}
{2, 4, 6, 8}
{2, 4, 6}
{1, 2, 3, 4}
R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .
{(8, 11), (10, 13)}
{(11, 8), (13, 10)}
{(10, 13), (8, 11)}
none of these
Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .
identify relation
reflexive
symmetric
antisymmetric
Let A = {1, 2, 3} and B = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ________________ .
neither reflexive nor transitive
neither symmetric nor transitive
transitive
none of these
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
R ⊂ S
S ⊂ R
R = S
none of these
If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .
{(3, 1), (6, 2), (8, 2), (9, 3)}
{(3, 1), (6, 2), (9, 3)}
{(3, 1), (2, 6), (3, 9)}
none of these
If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .
reflexive
symmetric
transitive
all the three options
If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .
symmetric and transitive only
reflexive and transitive only
symmetric only
transitive only
If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .
symmetric and transitive only
symmetric only
transitive only
none of these
Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .
R is reflexive and symmetric but not transitive
R is reflexive and transitive but not symmetric
R is symmetric and transitive but not reflexive
R is an equivalence relation
Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.
1
2
3
4
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
symmetric only
reflexive only
an equivalence relation
transitive only
S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .
symmetric and transitive only
reflexive and symmetric only
antisymmetric relation
an equivalence relation
In the set Z of all integers, which of the following relation R is not an equivalence relation ?
x R y : if x ≤ y
x R y : if x = y
x R y : if x − y is an even integer
x R y : if x ≡ y (mod 3)
Mark the correct alternative in the following question:
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then, R is _______________ .
reflexive but not symmetric
reflexive but not transitive
symmetric and transitive
neither symmetric nor transitive
Mark the correct alternative in the following question:
The relation S defined on the set R of all real number by the rule aSb if a b is _______________ .
an equivalence relation
reflexive, transitive but not symmetric
symmetric, transitive but not reflexive
neither transitive nor reflexive but symmetric
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
1
2
3
5
Mark the correct alternative in the following question:
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .
Reflexive and symmetric
Transitive and symmetric
Equivalence
Reflexive, transitive but not symmetric
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
reflexive
symmetric
transitive
none of these
Mark the correct alternative in the following question:
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b T. Then, R is ____________ .
reflexive but not symmetric
transitive but not symmetric
equivalence
none of these
Mark the correct alternative in the following question:
Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .
symmetric but not transitive
transitive but not symmetric
neither symmetric nor transitive
both symmetric and transitive
Mark the correct alternative in the following question:
For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .
reflexive
symmetric
transitive
none of these
Solutions for 1: Relations
![RD Sharma solutions for Mathematics [English] Class 12 chapter 1 - Relations RD Sharma solutions for Mathematics [English] Class 12 chapter 1 - Relations - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
RD Sharma solutions for Mathematics [English] Class 12 chapter 1 - Relations
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 1 (Relations) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 12 chapter 1 Relations are Composition of Functions and Invertible Function, Types of Functions, Types of Relations, Introduction of Relations and Functions, Concept of Binary Operations, Inverse of a Function.
Using RD Sharma Mathematics [English] Class 12 solutions Relations exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 1, Relations Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.