Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
`int(4x + 3)/(2x + 1).dx`
उत्तर १
`int(4x + 3)/(2x + 1).dx`
= `int((2(2x + 1) + 1))/(2x + 1).dx`
= `int ((2(2x + 1))/(2x + 1) + 1/(2x + 1)).dx`
= `2 int 1 dx + int 1/(2x + 1).dx`
= `2x + (1)/(2) log|2x + 1| + c`.
उत्तर २
`int(4x + 3)/(2x + 1).dx`
`u = 2x + 1=> (du)/(dx) = 2 => dx = (du)/2`
Now express the numerator 4x + 3 in terms of u:
`x = (u-1)/2`
`4x+3=4xx (u-1)/2 +3 = 2(u-1)+3=2u-2+3=2u+1`
`int(4x+3)/(2x+1) dx = int(2u+1)/uxx(du)/2`
`= 1/2int(2+1/u)du`
`1/2 int (2+1/u) du=1/2(2u+ln|u|)+C=u+1/2 ln|u|+C`
`=(2x+1)+1/2ln |2x+1|+C`
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
cot x log sin x
Solve: dy/dx = cos(x + y)
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
`int logx/(log ex)^2*dx` = ______.
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate `int 1/((2"x" + 3))` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int ("d"x)/(x(x^4 + 1))` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int cos^3x dx` = ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`int(cos 2x)/sinx dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(sec x/2 - 1)dx`