Advertisements
Advertisements
Question
Evaluate the following integral:
`int(4x + 3)/(2x + 1).dx`
Solution 1
`int(4x + 3)/(2x + 1).dx`
= `int((2(2x + 1) + 1))/(2x + 1).dx`
= `int ((2(2x + 1))/(2x + 1) + 1/(2x + 1)).dx`
= `2 int 1 dx + int 1/(2x + 1).dx`
= `2x + (1)/(2) log|2x + 1| + c`.
Solution 2
`int(4x + 3)/(2x + 1).dx`
`u = 2x + 1=> (du)/(dx) = 2 => dx = (du)/2`
Now express the numerator 4x + 3 in terms of u:
`x = (u-1)/2`
`4x+3=4xx (u-1)/2 +3 = 2(u-1)+3=2u-2+3=2u+1`
`int(4x+3)/(2x+1) dx = int(2u+1)/uxx(du)/2`
`= 1/2int(2+1/u)du`
`1/2 int (2+1/u) du=1/2(2u+ln|u|)+C=u+1/2 ln|u|+C`
`=(2x+1)+1/2ln |2x+1|+C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/(cos x - sin x)` dx = _______________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int x^x (1 + logx) "d"x`
`int(log(logx))/x "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int sin^-1 x`dx = ?
`int dx/(1 + e^-x)` = ______
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (logx)^2/x dx` = ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int "cosec"^4x dx` = ______.
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`