English

Evaluate the following integral: ∫4x+32x+1.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integral: 

`int(4x + 3)/(2x + 1).dx`

Evaluate

Solution 1

`int(4x + 3)/(2x + 1).dx`

= `int((2(2x + 1) + 1))/(2x + 1).dx`

= `int ((2(2x + 1))/(2x + 1) + 1/(2x + 1)).dx`

= `2 int 1 dx + int 1/(2x + 1).dx`

= `2x + (1)/(2) log|2x + 1| + c`.

shaalaa.com

Solution 2

`int(4x + 3)/(2x + 1).dx`

`u = 2x + 1=> (du)/(dx) = 2 => dx = (du)/2`

Now express the numerator 4x + 3 in terms of u:

`x = (u-1)/2`

`4x+3=4xx (u-1)/2 +3 = 2(u-1)+3=2u-2+3=2u+1`

`int(4x+3)/(2x+1) dx = int(2u+1)/uxx(du)/2`

`= 1/2int(2+1/u)du`

`1/2 int (2+1/u) du=1/2(2u+ln|u|)+C=u+1/2 ln|u|+C`

`=(2x+1)+1/2ln |2x+1|+C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.1 [Page 102]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals:

`int x/(x + 2).dx`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int 1/(cos x - sin x)` dx = _______________


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int x^x (1 + logx)  "d"x`


`int(log(logx))/x  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int sin^-1 x`dx = ?


`int dx/(1 + e^-x)` = ______


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int (logx)^2/x dx` = ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


`int "cosec"^4x  dx` = ______.


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×