हिंदी

Evaluate the following integral: ∫4x+32x+1.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral: 

`int(4x + 3)/(2x + 1).dx`

मूल्यांकन

उत्तर १

`int(4x + 3)/(2x + 1).dx`

= `int((2(2x + 1) + 1))/(2x + 1).dx`

= `int ((2(2x + 1))/(2x + 1) + 1/(2x + 1)).dx`

= `2 int 1 dx + int 1/(2x + 1).dx`

= `2x + (1)/(2) log|2x + 1| + c`.

shaalaa.com

उत्तर २

`int(4x + 3)/(2x + 1).dx`

`u = 2x + 1=> (du)/(dx) = 2 => dx = (du)/2`

Now express the numerator 4x + 3 in terms of u:

`x = (u-1)/2`

`4x+3=4xx (u-1)/2 +3 = 2(u-1)+3=2u-2+3=2u+1`

`int(4x+3)/(2x+1) dx = int(2u+1)/uxx(du)/2`

`= 1/2int(2+1/u)du`

`1/2 int (2+1/u) du=1/2(2u+ln|u|)+C=u+1/2 ln|u|+C`

`=(2x+1)+1/2ln |2x+1|+C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.1 [पृष्ठ १०२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.1 | Q 3.02 | पृष्ठ १०२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :`intxlogxdx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`1/(1 - tan x)`


Evaluate: `int 1/(x(x-1)) dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


`int logx/(log ex)^2*dx` = ______.


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int (cos2x)/(sin^2x)  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int cos^3x  dx` = ______.


Write `int cotx  dx`.


Evaluate `int (1+x+x^2/(2!))dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int sin^2(x/2)dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int1/(x(x-1))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×