English

∫ X 2 ( X 4 + 4 ) X 2 + 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{x^2 \left( x^4 + 4 \right)}{\left( x^2 + 4 \right)} dx\]
\[ = \int\left( \frac{x^6 + 4 x^2}{x^2 + 4} \right) dx\]
\[\text{ Now }, \]

\[\text{ Therefore }, \frac{x^2 \left( x^4 + 4 \right)}{\left( x^2 + 4 \right)} = \left( x^4 - 4 x^2 + 20 \right) - \frac{80}{x^2 + 4}\]
\[I = \int\frac{x^2 \left( x^4 + 4 \right)}{\left( x^2 + 4 \right)} dx\]
\[ = \int\left( x^4 - 4 x^2 + 20 \right) dx - 80\int\frac{dx}{x^2 + 2^2}\]
\[ = \int x^4 dx - 4\int x^2 dx + 20\int dx - 80\int\frac{dx}{x^2 + 2^2}\]
\[ = \frac{x^{4 + 1}}{4 + 1} - 4 \left[ \frac{x^3}{3} \right] + 20 \left( x \right) - 80 \times \frac{1}{2} \text{ tan }^{- 1} \left( \frac{x}{2} \right) + C\]
\[ = \frac{x^5}{5} - \frac{4}{3} x^3 + 20x - 40 \text{ tan }^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.2 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.2 | Q 9 | Page 106

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x \cos x\ dx\]

\[\int x e^x \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \sec^4 x\ dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×