English

RD Sharma solutions for Mathematics [English] Class 11 chapter 7 - Values of Trigonometric function at sum or difference of angles [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 11 chapter 7 - Values of Trigonometric function at sum or difference of angles - Shaalaa.com
Advertisements

Solutions for Chapter 7: Values of Trigonometric function at sum or difference of angles

Below listed, you can find solutions for Chapter 7 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 11.


Exercise 7.1Exercise 7.2Exercise 7.3Exercise 7.4
Exercise 7.1 [Pages 19 - 21]

RD Sharma solutions for Mathematics [English] Class 11 7 Values of Trigonometric function at sum or difference of angles Exercise 7.1 [Pages 19 - 21]

Exercise 7.1 | Q 1.1 | Page 19

If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:

sin (A + B)

 

Exercise 7.1 | Q 1.2 | Page 19

If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
cos (A + B)

Exercise 7.1 | Q 1.3 | Page 19

If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
sin (A − B)

Exercise 7.1 | Q 1.4 | Page 19

If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
cos (A − B)

Exercise 7.1 | Q 2.1 | Page 19

 If sinA=1213 and sinB=45, where π2 < A < π and 0 < B < π2, find the following:
sin (A + B)

Exercise 7.1 | Q 2.2 | Page 19

 If sinA=1213 and sinB=45, where π2 < A < π and 0 < B < π2, find the following:
cos (A + B)

Exercise 7.1 | Q 2.3 | Page 19

If sinA=35,cosB=1213, where A and B both lie in second quadrant, find the value of sin (A + B).

Exercise 7.1 | Q 3.1 | Page 10

If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
sin (A + B)

Exercise 7.1 | Q 3.2 | Page 19

If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
cos (A + B)

Exercise 7.1 | Q 4 | Page 19

If tanA=34,cosB=941, where π < A < 3π2 and 0 < B <π2, find tan (A + B).

 

Exercise 7.1 | Q 5 | Page 19

If sinA=12,cosB=1213, where π2< A < π and 3π2 < B < 2π, find tan (A − B).

Exercise 7.1 | Q 6.1 | Page 19

If sinA=12,cosB=32, where π2 < A < π and 0 < B < π2, find the following:
tan (A + B)

Exercise 7.1 | Q 6.2 | Page 19

If sinA=12,cosB=32, where π2 < A < π and 0 < B < π2, find the following:
tan (A - B)

Exercise 7.1 | Q 7.1 | Page 19

Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°

Exercise 7.1 | Q 7.2 | Page 19

Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°

Exercise 7.1 | Q 7.3 | Page 19

Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°

Exercise 7.1 | Q 7.4 | Page 19

Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°

Exercise 7.1 | Q 8.1 | Page 19

If cosA=1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)

Exercise 7.1 | Q 8.2 | Page 19

If cosA=1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)

Exercise 7.1 | Q 8.3 | Page 19

If cosA=1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)

Exercise 7.1 | Q 9 | Page 19

Prove that:
7π12+cosπ12=sin5π12sinπ12

Exercise 7.1 | Q 10 | Page 19

Prove that
tanA+tanBtanAtanB=sin(A+B)sin(AB)

Exercise 7.1 | Q 11.1 | Page 19

Prove that

cos11+sin11cos11sin11=tan56
Exercise 7.1 | Q 11.2 | Page 19

Prove that

cos9+sin9cos9sin9=tan54
Exercise 7.1 | Q 11.3 | Page 19

Prove that

cos8sin8cos8+sin8=tan37
Exercise 7.1 | Q 12.1 | Page 19

Prove that:

sin(π3x)cos(π6+x)+cos(π3x)sin(π6+x)=1

 

Exercise 7.1 | Q 12.2 | Page 19

Prove that:

sin(4π9+7)cos(π9+7)cos(4π9+7)sin(π9+7)=32

 

Exercise 7.1 | Q 12.3 | Page 19

Prove that:

sin(3π85)cos(π8+5)+cos(3π85)sin(π8+5)=1

 

Exercise 7.1 | Q 13 | Page 19

Prove that tan69+tan661tan69tan66=1.

Exercise 7.1 | Q 14.1 | Page 20

 If tanA=56 and tanB=111, prove that A+B=π4.

Exercise 7.1 | Q 14.2 | Page 20

If tanA=mm1 and tanB=12m1, then prove that AB=π4.

Exercise 7.1 | Q 15.1 | Page 20

Prove that:
cos245sin215=34

Exercise 7.1 | Q 15.2 | Page 20

Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

Exercise 7.1 | Q 16.1 | Page 20

Prove that: sin(A+B)+sin(AB)cos(A+B)+cos(AB)=tanA

Exercise 7.1 | Q 16.2 | Page 20

Prove that:
sin(AB)cosAcosB+sin(BC)cosBcosC+sin(CA)cosCcosA=0

 

Exercise 7.1 | Q 16.3 | Page 20

Prove that:

sin(AB)sinAsinB+sin(BC)sinBsinC+sin(CA)sinCsinA=0

 

Exercise 7.1 | Q 16.4 | Page 20

Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)

Exercise 7.1 | Q 16.5 | Page 20

Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)

Exercise 7.1 | Q 16.6 | Page 20

Prove that:
tan(A+B)cot(AB)=tan2Atan2B1tan2Atan2B

Exercise 7.1 | Q 17.1 | Page 20

Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x

Exercise 7.1 | Q 17.2 | Page 20

Prove that:
tanπ12+tanπ6+tanπ12tanπ6=1

Exercise 7.1 | Q 17.3 | Page 20

Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1

Exercise 7.1 | Q 17.4 | Page 20

Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x

Exercise 7.1 | Q 18 | Page 20

Prove that:
tan22xtan2x1tan22xtan2x=tan3xtanx

Exercise 7.1 | Q 19 | Page 20

Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 
Exercise 7.1 | Q 20 | Page 20

If tan A = x tan B, prove that
sin(AB)sin(A+B)=x1x+1

Exercise 7.1 | Q 21 | Page 20

If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 
Exercise 7.1 | Q 22 | Page 20

If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 
Exercise 7.1 | Q 23 | Page 20

If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) 1a1b.

Exercise 7.1 | Q 24 | Page 20

If x lies in the first quadrant and cosx=817, then prove that:

cos(π6+x)+cos(π4x)+cos(2π3x)=(312+12)2317

 

Exercise 7.1 | Q 25 | Page 20

If tan x + tan(x+π3)+tan(x+2π3)=3, then prove that 3tanxtan3x13tan2x=1.

Exercise 7.1 | Q 26 | Page 21

If sin (α + β) = 1 and sin (α − β) =12, where 0 ≤ α, βπ2, then find the values of tan (α + 2β) and tan (2α + β).

Exercise 7.1 | Q 27 | Page 21

If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 
Exercise 7.1 | Q 28.1 | Page 21

If sin α + sin β = a and cos α + cos β = b, show that

sin(α+β)=2aba2+b2

 

Exercise 7.1 | Q 28.2 | Page 21

If sin α + sin β = a and cos α + cos β = b, show that

cos(α+β)=b2a2b2+a2
Exercise 7.1 | Q 29.1 | Page 21

Prove that:
1sin(xa)sin(xb)=cot(xa)cot(xb)sin(ab)

Exercise 7.1 | Q 29.2 | Page 21

Prove that:

1sin(xa)cos(xb)=cot(xa)+tan(xb)cos(ab)

 

Exercise 7.1 | Q 29.3 | Page 21

Prove that:

1cos(xa)cos(ab)=tan(xb)tan(xa)sin(ab)

 

Exercise 7.1 | Q 30 | Page 21

If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.

Exercise 7.1 | Q 31 | Page 21

If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.

Exercise 7.1 | Q 32 | Page 21

If angle θ  is divided into two parts such that the tangents of one part is λ times the tangent of other, and ϕ is their difference, then show thatsinθ=λ+1λ1sinϕ

 
Exercise 7.1 | Q 33 | Page 21

If tanθ=sinαcosαsinα+cosα , then show that sinα+cosα=2cosθ.

Exercise 7.1 | Q 34 | Page 21

If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 
Exercise 7.2 [Page 26]

RD Sharma solutions for Mathematics [English] Class 11 7 Values of Trigonometric function at sum or difference of angles Exercise 7.2 [Page 26]

Exercise 7.2 | Q 1.1 | Page 26

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 

Exercise 7.2 | Q 1.2 | Page 26

Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 

Exercise 7.2 | Q 1.3 | Page 26

Find the maximum and minimum values of each of the following trigonometrical expression: 

5cosx+3sin(π6x)+4

Exercise 7.2 | Q 1.4 | Page 26

Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1

Exercise 7.2 | Q 2.1 | Page 26

Reduce each of the following expressions to the sine and cosine of a single expression: 

3sinxcosx 

Exercise 7.2 | Q 2.2 | Page 26

Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 

Exercise 7.2 | Q 2.3 | Page 26

Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 

Exercise 7.2 | Q 3 | Page 26

Show that sin 100° − sin 10° is positive. 

Exercise 7.2 | Q 4 | Page 26

Prove that (23+3)sinx+23cosx  lies between (23+15) and (23+15)

Exercise 7.3 [Pages 26 - 27]

RD Sharma solutions for Mathematics [English] Class 11 7 Values of Trigonometric function at sum or difference of angles Exercise 7.3 [Pages 26 - 27]

Exercise 7.3 | Q 1 | Page 26

If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 

Exercise 7.3 | Q 2 | Page 26

If x cos θ = y cos (θ+2π3)=zcos(θ+4π3)then write the value of 1x+1y+1z 

Exercise 7.3 | Q 3 | Page 26

Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 

Exercise 7.3 | Q 4 | Page 26

Write the maximum value of 12 sin x − 9 sin2 x

Exercise 7.3 | Q 5 | Page 26

If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.

Exercise 7.3 | Q 6 | Page 27

Write the interval in which the value of 5 cos x + 3 cos (x+π3)+3 lies. 

Exercise 7.3 | Q 7 | Page 27

If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B

Exercise 7.3 | Q 8 | Page 27

If cos(xy)cos(x+y)=mn  then write the value of tan x tan y

Exercise 7.3 | Q 9 | Page 27

If a = b cos2π3=ccos4π3 then write the value of ab + bc + ca.  

Exercise 7.3 | Q 10 | Page 27

If A + B = C, then write the value of tan A tan B tan C.

Exercise 7.3 | Q 11 | Page 27

If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 

Exercise 7.3 | Q 12 | Page 27

If tan α=11+2x and tanβ=11+2x+1 then write the value of α + β lying in the interval (0,π2) 

Exercise 7.4 [Pages 27 - 29]

RD Sharma solutions for Mathematics [English] Class 11 7 Values of Trigonometric function at sum or difference of angles Exercise 7.4 [Pages 27 - 29]

Exercise 7.4 | Q 1 | Page 27

The value of sin25π12sin2π12 

  • (a) 12 

     
  • (b) 32 

  • (c) 1 

  • (d) 0 

Exercise 7.4 | Q 2 | Page 27

If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to

  • (a) 0 

  • (b) −1 

  • (c) 1

  • (d) None of these 

Exercise 7.4 | Q 3 | Page 27

tan 20° + tan 40° + 3 tan 20° tan 40° is equal to 

  • (a) 34 

  • (b) 32 

  • (c) 3 

  • (d) 1 

Exercise 7.4 | Q 4 | Page 27

If tanA=aa+1 and tanB=12a+1 

  • (a) 0 

  • (b)π2 

  • (c) π3 

  • (d) π4 

Exercise 7.4 | Q 5 | Page 27

If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =

  • 0

  • 5

  • 1

  • None of these

Exercise 7.4 | Q 6 | Page 27

If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =

  • 6

  • 1

  • 16

     

  • None of these

Exercise 7.4 | Q 7 | Page 27

tan 3A − tan 2A − tan A =

  •  tan 3 A tan 2 A tan A

  • −tan 3 A tan 2 A tan A

  •  tan A tan 2 A − tan 2 A tan 3 A − tan 3 A tan A

  • None of these

Exercise 7.4 | Q 8 | Page 27

If A + B + C = π, then tanA+tanB+tanCtanAtanBtanC is equal to

 
  • tan A tan B tan C

  • 0

  • 1

  • None of these

Exercise 7.4 | Q 9 | Page 27

If cosP=17 and cosQ=1314, where P and Q both are acute angles. Then, the value of P − Q is

 

  • π6

     

  • π3

     

  • π4

     

  • π12

     

Exercise 7.4 | Q 10 | Page 28

If cot (α + β) = 0, sin (α + 2β) is equal to

  • sin α

  •  cos 2 β

  • cos α

  • sin 2 α

Exercise 7.4 | Q 11 | Page 28
cos10+sin10cos10sin10=

 

  •  tan 55°

  • cot 55°

  •  −tan 35°

  • −cot 35°

Exercise 7.4 | Q 12 | Page 28

The value of cos2(π6+x)sin2(π6x) is

 
  • 12cos2x

     

  • 0

  • 12cos2x

     

  • 12

     

Exercise 7.4 | Q 13 | Page 28

If tan θ1 tan θ2 = k, then cos(θ1θ2)cos(θ1+θ2)=

  • 1+k1k

     

  • 1k1+k

     

  • k+1k1

     

  • k1k+1

     

Exercise 7.4 | Q 14 | Page 28

If sin (π cos x) = cos (π sin x), then sin 2x = ______.

  • ±34
     
  • ±43
     
  • ±13
     
  • None of these

Exercise 7.4 | Q 15 | Page 28

If tanθ=12 and tanϕ=13, then the value of tanϕ=13 is 

 

 

  • π6

     

  • π

     

  • 0

  • π4

     

Exercise 7.4 | Q 16 | Page 28

The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is

  • sin 2A

  • cos 2A

  • cos 3A

  • sin 3A

Exercise 7.4 | Q 17 | Page 28

If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =

  •  a2 + 1

  • a2 + 2

  • a2 − 2

  •  None of these

Exercise 7.4 | Q 18 | Page 28

If tan (A − B) = 1 and sec (A + B) = 23, the smallest positive value of B is

 
  • 25π24

     

  • 19π24

     

  • 13π24

     

  • 11π24

     

Exercise 7.4 | Q 19 | Page 28

If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 

  • 2

  • 1

  • 0

  • 3

Exercise 7.4 | Q 20 | Page 28

The maximum value of sin2(2π3+x)+sin2(2π3x) is

  • 1/2

  • 32

     

  • 1/4

  • 3/4

Exercise 7.4 | Q 21 | Page 28

If cos (A − B) =35 and tan A tan B = 2, then

  • cosAcosB=15

     

  • cosAcosB=15

     

  • sinAsinB=15

     

  • sinAsinB=15

     

Exercise 7.4 | Q 22 | Page 28

If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =

  • −1

  • 12

     

  • 12

     

  • None of these

Exercise 7.4 | Q 23 | Page 29

If tanα=xx+1 and tanα=xx+1, then α+β is equal to

  • π2

     

  • π3

     

  • π6

     

  • π4

     

Solutions for 7: Values of Trigonometric function at sum or difference of angles

Exercise 7.1Exercise 7.2Exercise 7.3Exercise 7.4
RD Sharma solutions for Mathematics [English] Class 11 chapter 7 - Values of Trigonometric function at sum or difference of angles - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 11 chapter 7 - Values of Trigonometric function at sum or difference of angles

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC 7 (Values of Trigonometric function at sum or difference of angles) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 11 chapter 7 Values of Trigonometric function at sum or difference of angles are Transformation Formulae, 180 Degree Plusminus X Function, 2X Function, 3X Function, Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications, Concept of Angle, Introduction of Trigonometric Functions, Signs of Trigonometric Functions, Domain and Range of Trigonometric Functions, Trigonometric Functions of Sum and Difference of Two Angles, Trigonometric Equations, Trigonometric Functions, Truth of the Identity, Negative Function Or Trigonometric Functions of Negative Angles, 90 Degree Plusminus X Function, Conversion from One Measure to Another, Graphs of Trigonometric Functions, Values of Trigonometric Functions at Multiples and Submultiples of an Angle, Sine and Cosine Formulae and Their Applications.

Using RD Sharma Mathematics [English] Class 11 solutions Values of Trigonometric function at sum or difference of angles exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 11 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 7, Values of Trigonometric function at sum or difference of angles Mathematics [English] Class 11 additional questions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.