Advertisements
Online Mock Tests
Chapters
![Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 2 - Sequences and Series Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 2 - Sequences and Series - Shaalaa.com](/images/mathematics-and-statistics-2-arts-and-science-english-11-standard-maharashtra-state-board_6:eaa36ca82be449018bee0683dd2bba6f.jpg)
Advertisements
Solutions for Chapter 2: Sequences and Series
Below listed, you can find solutions for Chapter 2 of Maharashtra State Board Balbharati for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board.
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 2 Sequences and Series Exercise 2.1 [Pages 27 - 28]
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
For the G.P. if r = `1/3`, a = 9 find t7
For the G.P. if a = `7/243`, r = 3 find t6.
For the G.P. if r = − 3 and t6 = 1701, find a.
For the G.P. if a = `2/3`, t6 = 162, find r.
Which term of the G.P. 5, 25, 125, 625, … is 510?
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers 3, x, and x + 6 form are in G.P. Find nth term
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
The numbers x − 6, 2x and x2 are in G.P. Find x
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
The numbers x − 6, 2x and x2 are in G.P. Find nth term
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 2 Sequences and Series Exercise 2.2 [Pages 31 - 32]
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
For a G.P. a = 2, r = `-2/3`, find S6
For a G.P. if S5 = 1023 , r = 4, Find a
For a G.P. if a = 2, r = 3, Sn = 242 find n
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a G.P. If t3 = 20 , t6 = 160 , find S7
For a G.P. If t4 = 16, t9 = 512, find S10
Find the sum to n terms 3 + 33 + 333 + 3333 + …
Find the sum to n terms 8 + 88 + 888 + 8888 + ...
Find the sum to n terms 0.4 + 0.44 + 0.444 + ...
Find the sum to n terms 0.7 + 0.77 + 0.777 + ...
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 2 Sequences and Series Exercise 2.3 [Pages 33 - 34]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
Express the following recurring decimal as a rational number:
`0.bar(7)`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
Find : `sum_("n" = 1)^oo 0.4^"n"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 2 Sequences and Series Exercise 2.4 [Page 37]
Verify whether the following sequence is H.P.
`1/3, 1/5, 1/7, 1/9, ...`
Verify whether the following sequence is H.P.
`1/3, 1/6, 1/12, 1/24, ...`
Verify whether the following sequence is H.P.
`5, 10/17, 10/32, 10/47, ...`
Find the nth term and hence find the 8th term of the following H.P.s :
`1/2, 1/5, 1/8, 1/11, ...`
Find the nth term and hence find the 8th term of the following H.P.s :
`1/4, 1/6, 1/8, 1/10, ...`
Find the nth term and hence find the 8th term of the following H.P.s:
`1/5, 1/10, 1/15, 1/20, ...`
Find A.M. of two positive numbers whose G.M. and H.M. are 4 and `16/5` respectively.
Find H.M. of two positive numbers A.M. and G.M. are `15/2` and 6
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Insert two numbers between `1/4` and `1/3` so that the resulting sequence is a H.P.
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Find two numbers whose A.M. exceeds their G.M. by `1/2` and their H.M. by `25/26`
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 2 Sequences and Series Exercise 2.5 [Page 38]
Find Sn of the following arithmetico - geometric sequence:
2, 4x, 6x2, 8x3, 10x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 4x, 7x2, 10x3, 13x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …
Find Sn of the following arithmetico - geometric sequence:
3, 12, 36, 96, 240, …
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, 2/4, 3/16, 4/64, ...`
Find the sum to infinity of the following arithmetico - geometric sequence:
`3, 6/5, 9/25, 12/125, 15/625, ...`
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, -4/3, 7/9, -10/27 ...`
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 2 Sequences and Series Exercise 2.6 [Page 40]
Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`
Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`
Find `sum_("r" = 1)^"n"((1 + 2 + 3 .... + "r")/"r")`
Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... + "r"^3)/("r"("r" + 1))]`
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms
Find the sum 22 + 42 + 62 + 82 + ... upto n terms
Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)
Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)
If `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... "upto n terms")/(1 + 2 + 3 + 4 + ... "upto n terms") = 100/3,` find n
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively then show that - 9S22 = S3 (1 + 8 S1)
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 2 Sequences and Series Miscellaneous Exercise 2.1 [Pages 40 - 41]
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
0.12
0.2
0.02
2
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
1024
`1/1024`
– 128
`(-1)/28`
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
3
2
1
– 1
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
10th
11th
12th
13th
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
3
5
15
– 5
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
1
2
4
8
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
5
`-1/2`
`10/3`
`3/10`
Select the correct answer from the given alternative.
The tenth term of H.P. `2/9, 1/7, 2/19, 1/12, ...` is –
`1/27`
`9/2`
`5/2`
27
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
A = `("a" + "b")/2`
G = `sqrt("ab")`
H = `(2"ab")/("a" + "b")`
A = GH
Select the correct answer from the given alternative.
The G.M.of two numbers exceeds their H.M. by `6/5`, the A.M. exceeds G.M. by `3/2` the two numbers are ...
`6, 15/2`
15, 25
3, 12
`6/5, 3/2`
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 2 Sequences and Series Miscellaneous Exercise 2.2 [Pages 41 - 42]
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
Find 2 + 22 + 222 + 2222 + ... upto n terms
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
Find `sum_("r" = 1)^"n" (5"r"^2 + 4"r" - 3)`
Answer the following:
Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`
Answer the following:
Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms
Answer the following:
Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms
Answer the following:
Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms
Answer the following:
Find 122 + 132 + 142 + 152 + ... 202
Answer the following:
If `(1 + 2 + 3 + 4 + 5 + ... "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ... "upto n terms") = 3/22` Find the value of n
Answer the following:
Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)
Answer the following:
If `(1 xx 3 + 2 xx 5 + 3 xx 7 + ... "upto n terms")/(1^3 + 2^3 + 3^3 + ... "upto n terms") = 5/9`, find the value of n
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Answer the following:
If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
Answer the following:
Find the coefficient of x6 in the expansion of e2x using series expansion
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
Solutions for 2: Sequences and Series
![Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 2 - Sequences and Series Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 2 - Sequences and Series - Shaalaa.com](/images/mathematics-and-statistics-2-arts-and-science-english-11-standard-maharashtra-state-board_6:eaa36ca82be449018bee0683dd2bba6f.jpg)
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 2 - Sequences and Series
Shaalaa.com has the Maharashtra State Board Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board Maharashtra State Board solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Balbharati solutions for Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board Maharashtra State Board 2 (Sequences and Series) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Balbharati textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 2 Sequences and Series are Concept of Sequences, Arithmetic Progression (A.P.), Geometric Progression (G. P.), Harmonic Progression (H. P.), Arithmetico Geometric Series, Power Series.
Using Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board solutions Sequences and Series exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Balbharati Solutions are essential questions that can be asked in the final exam. Maximum Maharashtra State Board Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board students prefer Balbharati Textbook Solutions to score more in exams.
Get the free view of Chapter 2, Sequences and Series Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board additional questions for Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board Maharashtra State Board, and you can use Shaalaa.com to keep it handy for your exam preparation.