मराठी

RD Sharma solutions for Mathematics [English] Class 11 chapter 5 - Trigonometric Functions [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 11 chapter 5 - Trigonometric Functions - Shaalaa.com
Advertisements

Solutions for Chapter 5: Trigonometric Functions

Below listed, you can find solutions for Chapter 5 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 11.


Exercise 5.1Exercise 5.2Exercise 5.3Exercise 5.4Exercise 5.5
Exercise 5.1 [Pages 18 - 19]

RD Sharma solutions for Mathematics [English] Class 11 5 Trigonometric Functions Exercise 5.1 [Pages 18 - 19]

Exercise 5.1 | Q 1 | Page 18

Prove the following identites

sec4x - sec2x = tan4x + tan2x

Exercise 5.1 | Q 2 | Page 18

Prove the following identities
sin6x+cos6x=13sin2xcos2x

Exercise 5.1 | Q 3 | Page 18

Prove the following identities
(cosecxsinx)(secxcosx)(tanx+cotx)=1

Exercise 5.1 | Q 4 | Page 18

Prove the following identities 
cosecx(secx1)cotx(1cosx)=tanxsinx

Exercise 5.1 | Q 5 | Page 18

Prove the following identities
1sinxcosxcosx(secxcosecx)sin2xcos2xsin3x+cos3x=sinx

Exercise 5.1 | Q 6 | Page 18

Prove the following identitie

tanx1cotx+cotx1tanx=(secxcossecx+1)
Exercise 5.1 | Q 7 | Page 18

Prove the following identities
sin3x+cos3xsinx+cosx+sin3xcos3xsinxcosx=2

Exercise 5.1 | Q 8 | Page 18

Prove the following identities
(secxsecy+tanxtany)2(secxtany+tanxsecy)2=1

Exercise 5.1 | Q 9 | Page 18

Prove the following identities
cosx1sinx=1+cosx+sinx1+cosxsinx

Exercise 5.1 | Q 10 | Page 18

Prove the following identities

tan3x1+tan2x+cot3x1+cot2x=12sin2xcos2xsinxcosx
Exercise 5.1 | Q 11 | Page 18

Prove the following identities
1sin2x1+cotxcos2x1+tanx=sinxcosx

Exercise 5.1 | Q 12 | Page 18

Prove the following identities

(1sec2xcos2x+1cosec2xsin2x)sin2xcos2x=1sin2xcos2x2+sin2xcos2x

 

Exercise 5.1 | Q 13 | Page 18

Prove the following identities
(1+tanαtanβ)2+(tanαtanβ)2=sec2αsec2β

Exercise 5.1 | Q 14 | Page 18

Prove the following identities

(1+cotx+tanx)(sinxcosx)sec3xcosec3x=sin2xcos2x

 

Exercise 5.1 | Q 15 | Page 18

Prove the following identities 

2sinxcosxcosx1sinx+sin2xcos2x=cotx

 

Exercise 5.1 | Q 16 | Page 18

Prove the following identities

cosx(tanx+2)(2tanx+1)=2secx+5sinx
Exercise 5.1 | Q 17 | Page 18

If x=2sinx1+cosx+sinx, then prove that

1cosx+sinx1+sinx is also equal to a.
Exercise 5.1 | Q 18 | Page 18

If sinx=a2b2a2+b2, then the values of tan x, sec x and cosec x

Exercise 5.1 | Q 19 | Page 18

If tanx=ba , then find the values of a+bab+aba+b.

Exercise 5.1 | Q 20 | Page 18

If tanx=ab, show that

asinxbcosxasinx+bcosx=a2b2a2+b2
Exercise 5.1 | Q 21 | Page 19

If cosecxsinx=a3,secxcosx=b3, then prove that a2b2(a2+b2)=1

Exercise 5.1 | Q 22 | Page 19

If cotx(1+sinx)=4m and cotx(1sinx)=4n, (m2+n2)2=mn

Exercise 5.1 | Q 23 | Page 19

If sinx+cosx=m, then prove that sin6x+cos6x=43(m21)24, where m22

Exercise 5.1 | Q 24 | Page 19

If a=secxtanx and b=cosecx+cotx, then shown that  ab+ab+1=0

Exercise 5.1 | Q 25 | Page 19

Prove the:
1sinx1+sinx+1+sinx1sinx=2cosx, where π2<x<π

Exercise 5.1 | Q 26.1 | Page 19

If Tn=sinnx+cosnx, prove that T3T5T1=T5T7T3

 

Exercise 5.1 | Q 26.2 | Page 19

If Tn=sinnx+cosnx, prove that  2T63T4+1=0

Exercise 5.1 | Q 26.3 | Page 19

If Tn=sinnx+cosnx, prove that 6T1015T8+10T61=0

Exercise 5.2 [Page 25]

RD Sharma solutions for Mathematics [English] Class 11 5 Trigonometric Functions Exercise 5.2 [Page 25]

Exercise 5.2 | Q 1.1 | Page 25

Find the value of the other five trigonometric functions 

cotx=125, x in quadrant III
Exercise 5.2 | Q 1.2 | Page 25

Find the value of the other five trigonometric functions 

cosx=12, x in quadrant II
Exercise 5.2 | Q 1.3 | Page 25

Find the value of the other five trigonometric functions 
tanx=34, x in quadrant III

Exercise 5.2 | Q 1.4 | Page 25

Find the value of the other five trigonometric functions
sinx=35, x in quadrant I

Exercise 5.2 | Q 2 | Page 25

If sin x=1213 and x lies in the second quadrant, find the value of sec x + tan x.

Exercise 5.2 | Q 3 | Page 25

If sinx=35,tany=12 and π2<x<π<y<3π2,  find the value of 8 tan x5secy

Exercise 5.2 | Q 4 | Page 25

If sin x + cos x = 0 and x lies in the fourth quadrant, find sin x and cos x.

 
Exercise 5.2 | Q 5 | Page 25

If cosx=35 and π<x<3π2 find the values of other five trigonometric functions and hence evaluate cosecx+cotxsecxtanx

Exercise 5.3 [Pages 39 - 40]

RD Sharma solutions for Mathematics [English] Class 11 5 Trigonometric Functions Exercise 5.3 [Pages 39 - 40]

Exercise 5.3 | Q 1.01 | Page 39

Find the value of the following trigonometric ratio:

sin5π3



Exercise 5.3 | Q 1.02 | Page 39

Find the value of the following trigonometric ratio:
sin 17π

Exercise 5.3 | Q 1.03 | Page 39

Find the value of the following trigonometric ratio:
tan11π6

Exercise 5.3 | Q 1.04 | Page 39

Find the value of the following trigonometric ratio:

cos(25π4)
Exercise 5.3 | Q 1.05 | Page 39

Find the value of the following trigonometric ratio:
tan7π4

Exercise 5.3 | Q 1.06 | Page 39

Find the values of the following trigonometric ratio:

sin17π6

 

Exercise 5.3 | Q 1.07 | Page 39

Find the values of the following trigonometric ratio:

cos19π6

 

Exercise 5.3 | Q 1.08 | Page 39

Find the values of the following trigonometric ratio:

sin(11π6)

 

Exercise 5.3 | Q 1.09 | Page 39

Find the values of the following trigonometric ratio:

cosec(20π3)

 

Exercise 5.3 | Q 1.1 | Page 39

Find the values of the following trigonometric ratio:

tan(13π4)

 

Exercise 5.3 | Q 1.11 | Page 39

Find the values of the following trigonometric ratio:

cos19π4
Exercise 5.3 | Q 1.12 | Page 39

Find the values of the following trigonometric ratio:

sin41π4
Exercise 5.3 | Q 1.13 | Page 39

Find the values of the following trigonometric ratio:

cos39π4
Exercise 5.3 | Q 1.14 | Page 39

Find the values of the following trigonometric ratio:

sin151π6
Exercise 5.3 | Q 2.1 | Page 39

Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0

Exercise 5.3 | Q 2.2 | Page 39

Prove that:

sin8π3cos23π6+cos13π3sin35π6=12

 

Exercise 5.3 | Q 2.3 | Page 39

Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = 12

Exercise 5.3 | Q 2.4 | Page 39

Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0

Exercise 5.3 | Q 2.5 | Page 39
Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 

Exercise 5.3 | Q 2.6 | Page 39

Prove that: tan11π32sin4π634cosec2π4+4cos217π6=3432

 

Exercise 5.3 | Q 2.7 | Page 39

Prove that:

3sinπ6secπ34sin5π6cotπ4=1

 

Exercise 5.3 | Q 3.1 | Page 39

Prove that:
cos(2π+x)cosec(2π+x)tan(π/2+x)sec(π/2+x)cosxcot(π+x)=1

 

Exercise 5.3 | Q 3.2 | Page 39

Prove that

cosec(90+x)+cot(450+x)cosec(90x)+tan(180x)+tan(180+x)+sec(180x)tan(360+x)sec(x)=2

 

Exercise 5.3 | Q 3.3 | Page 39

Prove that

sin(180+x)cos(90+x)tan(270x)cot(360x)sin(360x)cos(360+x)cosec(x)sin(270+x)=1

 

Exercise 5.3 | Q 3.4 | Page 39

Prove that

{1+cotxsec(π2+x)}{1+cotx+sec(π2+x)}=2cotx

 

Exercise 5.3 | Q 3.5 | Page 39

Prove that

tan(90x)sec(180x)sin(x)sin(180+x)cot(360x)cosec(90x)=1

 

Exercise 5.3 | Q 4 | Page 40

Prove that:
sin2π18+sin2π9+sin27π18+sin24π9=2

 
Exercise 5.3 | Q 5 | Page 40

Prove that:
sec(3π2x)sec(x5π2)+tan(5π2+x)tan(x3π2)=1.

Exercise 5.3 | Q 6.1 | Page 40

In a ∆ABC, prove that:
cos (A + B) + cos C = 0

Exercise 5.3 | Q 6.2 | Page 40

In a ∆ABC, prove that:

cos(A+B2)=sinC2

 

Exercise 5.3 | Q 6.3 | Page 40

In a ∆ABC, prove that:

tanA+B2=cotC2
Exercise 5.3 | Q 7 | Page 40

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0

Exercise 5.3 | Q 8.1 | Page 40

Find x from the following equations:
cosec(π2+θ)+xcosθcot(π2+θ)=sin(π2+θ)

Exercise 5.3 | Q 8.2 | Page 40

Find x from the following equations:
xcot(π2+θ)+tan(π2+θ)sinθ+cosec(π2+θ)=0

Exercise 5.3 | Q 9.1 | Page 40

Prove that:
tan4πcos3π2sin5π6cos2π3=14

Exercise 5.3 | Q 9.2 | Page 40

Prove that:
sin13π3sin8π3+cos2π3sin5π6=12

Exercise 5.3 | Q 9.3 | Page 40

Prove that:
sin13π3sin2π3+cos4π3sin13π6=12

Exercise 5.3 | Q 9.4 | Page 40

Prove that:

sin10π3cos13π6+cos8π3sin5π6=1
Exercise 5.3 | Q 9.5 | Page 40

Prove that:

tan5π4cot9π4+tan17π4cot15π4=0

 

Exercise 5.4 [Pages 40 - 41]

RD Sharma solutions for Mathematics [English] Class 11 5 Trigonometric Functions Exercise 5.4 [Pages 40 - 41]

Exercise 5.4 | Q 1 | Page 40

Write the maximum and minimum values of cos (cos x).

 
Exercise 5.4 | Q 2 | Page 40

Write the maximum and minimum values of sin (sin x).

 
Exercise 5.4 | Q 3 | Page 40

Write the maximum value of sin (cos x).

 
Exercise 5.4 | Q 4 | Page 40

If sin x = cos2 x, then write the value of cos2 x (1 + cos2 x).

 
Exercise 5.4 | Q 5 | Page 40

If sin x + cosec x = 2, then write the value of sinn x + cosecn x.

 
Exercise 5.4 | Q 6 | Page 40

If sin x + sin2 x = 1, then write the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.

 
Exercise 5.4 | Q 7 | Page 40

If sin x + sin2 x = 1, then write the value of cos8 x + 2 cos6 x + cos4 x.

 
Exercise 5.4 | Q 8 | Page 40

If sin θ1 + sin θ2 + sin θ3 = 3, then write the value of cos θ1 + cos θ2 + cos θ3.

 
Exercise 5.4 | Q 9 | Page 40

Write the value of sin 10° + sin 20° + sin 30° + ... + sin 360°.

Exercise 5.4 | Q 10 | Page 40

A circular wire of radius 15 cm is cut and bent so as to lie along the circumference of a loop of radius 120 cm. Write the measure of the angle subtended by it at the centre of the loop.

Exercise 5.4 | Q 11 | Page 41

Write the value of 2 (sin6 x + cos6 x) −3 (sin4 x + cos4 x) + 1.

Exercise 5.4 | Q 12 | Page 41

Write the value of cos 1° + cos 2° + cos 3° + ... + cos 180°.

Exercise 5.4 | Q 13 | Page 41

If cot (α + β) = 0, then write the value of sin (α + 2β).

 
Exercise 5.4 | Q 14 | Page 41

If tan A + cot A = 4, then write the value of tan4 A + cot4 A.

 
Exercise 5.4 | Q 15 | Page 41

Write the least value of cos2 x + sec2 x.

 
Exercise 5.4 | Q 16 | Page 41
If x = sin14 x + cos20  x, then write the smallest interval in which the value of x lie.
Exercise 5.4 | Q 17 | Page 41

If 3 sin x + 5 cos x = 5, then write the value of 5 sin x − 3 cos x.

 
Exercise 5.5 [Pages 41 - 43]

RD Sharma solutions for Mathematics [English] Class 11 5 Trigonometric Functions Exercise 5.5 [Pages 41 - 43]

Exercise 5.5 | Q 1 | Page 41

If tan x = x14x, then sec x − tan x is equal to

  • 2x,12x

  • 12x,2x

  • 2x

  • 2x,12x

Exercise 5.5 | Q 2 | Page 41

If sec x=x+14x, then sec x + tan x = 

 
  • x,1x

     

  • 2x,12x

     

  • 2x,12x

     

  • 1x,x

     

Exercise 5.5 | Q 3 | Page 41

If π2<x<3π2, then 1sinx1+sinx is equal to

 

  • sec x − tan x

  •  sec x + tan x

  • tan x − sec x

  • none of these

Exercise 5.5 | Q 4 | Page 41
1+cosx1cosx is equal to

 

  • cosec x + cot x

  • cosec x − cot x

  • −cosec x + cot x

  • −cosec x − cot x

Exercise 5.5 | Q 5 | Page 41

If 0<x<π2, and if y+11y=1+sinx1sinx, then y is equal to

  • cotx2

     

  • tanx2

     

  • cotx2+tanx2

     

  • cotx2tanx2

     

Exercise 5.5 | Q 6 | Page 41

If π2<x<π, then 1sinx1+sinx+1+sinx1sinx is equal to

  • 2 sec x

  • −2 sec x

  • sec x

  • −sec x

Exercise 5.5 | Q 7 | Page 41

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of

  • θ, ϕ

  • r, θ

  • r, ϕ

  • r

Exercise 5.5 | Q 8 | Page 41

If tan x + sec x = 3, 0 < x < π, then x is equal to

  • 5π6

     

  • 2π3

     

  • π6

     

  • π3
Exercise 5.5 | Q 9 | Page 41

If tan x=15 and θ lies in the IV quadrant, then the value of cos x is

 
  • 56

     

  • 26

     

  • 12

     

  • 16

     

Exercise 5.5 | Q 10 | Page 42

If 3π4<α<π, then 2cotα+1sin2α is equal to

  • 1 − cot α

  • 1 + cot α

  • −1 + cot α

  • −1 −cot α

Exercise 5.5 | Q 11 | Page 42

sin6 A + cos6 A + 3 sin2 A cos2 A =

  • 0

  • 1

  • 2

  • 3

Exercise 5.5 | Q 12 | Page 42

If cosecxcotx=12,0<x<π2,

 
  • 53

     

  • 35

     

  • 35

     

  • 53

     

Exercise 5.5 | Q 13 | Page 42

If cosecx+cotx=112, then tan x =

 

  • 2122

     

  • 1516

     

  • 44117

     

  • 11744

     

Exercise 5.5 | Q 14 | Page 42
sec2x=4xy(x+y)2 is true if and only if

 

  • x + y ≠ 0

  • x = y, x ≠ 0

  • x = y

  • x ≠0, y ≠ 0

Exercise 5.5 | Q 15 | Page 42

If x is an acute angle and tanx=17, then the value of cosec2xsec2xcosec2x+sec2x is

  • 3/4

  • 1/2

  • 2

  • 5/4

Exercise 5.5 | Q 16 | Page 42

The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is

  • 7

  • 8

  • 9.5

  • 10

Exercise 5.5 | Q 17 | Page 42

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =

  • 1

  • 4

  • 2

  • 0

Exercise 5.5 | Q 18 | Page 42

If tan A + cot A = 4, then tan4 A + cot4 A is equal to

  • 110

  • 191

  • 80

  • 194

Exercise 5.5 | Q 19 | Page 42

If x sin 45° cos2 60° = tan260cosec30sec45cot230, then x =

 
  • 2

  • 4

  • 8

  • 16

Exercise 5.5 | Q 20 | Page 42

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to

  • 5310

     

  • 2310

     

  • 3710

     

  • 710

     

Exercise 5.5 | Q 21 | Page 42

If cosecx+cotx=112, then tan x =

 

  • 2122

     

  • 1516

     

  • 44117

     

  • 11743

     

Exercise 5.5 | Q 22 | Page 42

If tan θ + sec θ =ex, then cos θ equals

  • ex+ex2

     

  • 2ex+ex

     

  • exex2

     

  • exexex+ex

     

Exercise 5.5 | Q 23 | Page 42

If sec x + tan x = k, cos x =

  • k2+12k

     

  • 2kk2+1

     

  • kk2+1

     

  • kk21

     

Exercise 5.5 | Q 24 | Page 43

If f(x)=cos2x+sec2x, then

  • f(x) < 1

  • f(x) = 1

  • 1 < f(x) < 2

  • f(x) ≥ 2

Exercise 5.5 | Q 25 | Page 43

Which of the following is incorrect?

  • sinx=15

     

  • cos x = 1

  • secx=12

     

  • tan x = 20

Exercise 5.5 | Q 26 | Page 43

The value of cos1cos2cos3...cos179 is

 
  • 12

     

  • 0

  • 1

  • -1

Exercise 5.5 | Q 27 | Page 43

The value of tan1tan2tan3...tan89 is

 
  • 0

  • 1

  • 12

     

  • not defined  

Exercise 5.5 | Q 28 | Page 43

Which of the following is correct?

  • sin1>sin1

     

  • sin1<sin1

     

  • sin1=sin1

     

  • sin1=π180sin1

Solutions for 5: Trigonometric Functions

Exercise 5.1Exercise 5.2Exercise 5.3Exercise 5.4Exercise 5.5
RD Sharma solutions for Mathematics [English] Class 11 chapter 5 - Trigonometric Functions - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 11 chapter 5 - Trigonometric Functions

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC 5 (Trigonometric Functions) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 11 chapter 5 Trigonometric Functions are Transformation Formulae, 180 Degree Plusminus X Function, 2X Function, 3X Function, Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications, Concept of Angle, Introduction of Trigonometric Functions, Signs of Trigonometric Functions, Domain and Range of Trigonometric Functions, Trigonometric Functions of Sum and Difference of Two Angles, Trigonometric Equations, Trigonometric Functions, Truth of the Identity, Negative Function Or Trigonometric Functions of Negative Angles, 90 Degree Plusminus X Function, Conversion from One Measure to Another, Graphs of Trigonometric Functions, Values of Trigonometric Functions at Multiples and Submultiples of an Angle, Sine and Cosine Formulae and Their Applications.

Using RD Sharma Mathematics [English] Class 11 solutions Trigonometric Functions exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 11 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 5, Trigonometric Functions Mathematics [English] Class 11 additional questions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.