Advertisements
Online Mock Tests
Chapters
2: Relations
3: Functions
4: Measurement of Angles
5: Trigonometric Functions
6: Graphs of Trigonometric Functions
7: Values of Trigonometric function at sum or difference of angles
8: Transformation formulae
9: Values of Trigonometric function at multiples and submultiples of an angle
10: Sine and cosine formulae and their applications
▶ 11: Trigonometric equations
12: Mathematical Induction
13: Complex Numbers
14: Quadratic Equations
15: Linear Inequations
16: Permutations
17: Combinations
18: Binomial Theorem
19: Arithmetic Progression
20: Geometric Progression
21: Some special series
22: Brief review of cartesian system of rectangular co-ordinates
23: The straight lines
24: The circle
25: Parabola
26: Ellipse
27: Hyperbola
28: Introduction to three dimensional coordinate geometry
29: Limits
30: Derivatives
31: Mathematical reasoning
32: Statistics
33: Probability
![RD Sharma solutions for Mathematics [English] Class 11 chapter 11 - Trigonometric equations RD Sharma solutions for Mathematics [English] Class 11 chapter 11 - Trigonometric equations - Shaalaa.com](/images/9788193663004-mathematics-english-class-11_6:972cafaba17f4949992ada196fa0f041.jpg)
Advertisements
Solutions for Chapter 11: Trigonometric equations
Below listed, you can find solutions for Chapter 11 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 11.
RD Sharma solutions for Mathematics [English] Class 11 11 Trigonometric equations Exercise 11.1 [Pages 21 - 22]
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
RD Sharma solutions for Mathematics [English] Class 11 11 Trigonometric equations Exercise 11.2 [Page 26]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the general solutions of tan2 2x = 1.
Write the set of values of a for which the equation
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of points of intersection of the curves
Write the solution set of the equation
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
RD Sharma solutions for Mathematics [English] Class 11 11 Trigonometric equations Exercise 11.3 [Pages 26 - 28]
The smallest value of x satisfying the equation
- \[2\pi/3\]
`pi/3`
`pi/6`
`pi/12`
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
- \[\pi/3\]
- \[2\pi/3\]
- \[4\pi/6\]
- \[5\pi/12\]
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
AP
GP
HP
none of these
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
2
0
1
none of these
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
- \[x = 2 n\pi \pm \frac{\pi}{6}, n \in Z\]
- \[x = 2 n\pi \pm \frac{2\pi}{3}, n \in Z\]
- \[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
none of these
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
- \[\left( - \pi/4, \pi/4 \right)\]
- \[\left( \pi/4, 3\pi/4 \right)\]
- \[\left( 3\pi/4, 5\pi/4 \right)\]
- \[\left( 5\pi/4, 7\pi/4 \right)\]
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
5
7
6
none of these
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
- \[x = n\pi + \left( - 1 \right)^n \frac{\pi}{4} + \frac{\pi}{3}, n \in Z\]
\[x = n\pi + \left( - 1 \right)^n \frac{\pi}{3} + \frac{\pi}{6}, n \in Z\]
- \[x = n\pi \pm \frac{\pi}{6}, n \in Z\]
\[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
The smallest positive angle which satisfies the equation
- \[\frac{5\pi}{6}\]
- \[\frac{2\pi}{3}\]
- \[\frac{\pi}{3}\]
- \[\frac{\pi}{6}\]
If \[4 \sin^2 x = 1\], then the values of x are
\[2 n\pi \pm \frac{\pi}{3}, n \in Z\]
- \[n\pi \pm \frac{\pi}{3}, n \in Z\]
\[n\pi \pm \frac{\pi}{6}, n \in Z\]
- \[2 n\pi \pm \frac{\pi}{6}, n \in Z\]
If \[\cot x - \tan x = \sec x\], then, x is equal to
- \[2 n\pi + \frac{3\pi}{2}, n \in Z\]
\[n\pi + \left( - 1 \right)^n \frac{\pi}{6}, n \in Z\]
- \[n\pi + \frac{\pi}{2}, n \in Z\]
none of these.
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
`(5pi)/3`
\[\frac{4\pi}{3}\]
`(2pi)/3`
\[\frac{\pi}{3}\]
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
7
5
4
2
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
1
2
3
4
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
0
- \[\sin^{- 1} \left\{ \log_e \left( 2 - \sqrt{5} \right) \right\}\]
1
none of these
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
finite
infinite
one
no
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
- \[n \pi + \left( - 1 \right)^n \frac{\pi}{4}, n \in Z\]
\[\left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
- \[n \pi + \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
\[n \pi + \left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
General solution of \[\tan 5 x = \cot 2 x\] is
\[\frac{n \pi}{7} + \frac{\pi}{2}, n \in Z\]
- \[x = \frac{n \pi}{7} + \frac{\pi}{3}, n \in Z\]
- \[x = \frac{n \pi}{7} + \frac{\pi}{14}, n \in Z\]
- \[x = \frac{n \pi}{7} - \frac{\pi}{14}, n \in Z\]
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
- \[\left( - \pi/4, \pi/4 \right)\]
- \[\left(\pi/4,3 \pi/4 \right)\]
- \[\left( 3\pi/4, 5\pi/4 \right)\]
- \[\left( 5\pi/4, 7\pi/4 \right)\]
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
- \[x = \frac{\pi}{3}, \frac{4\pi}{3}\]
- \[x = \frac{2\pi}{3}, \frac{4\pi}{3}\]
- \[x = \frac{2\pi}{3}, \frac{7\pi}{6}\]
- \[\theta = \frac{2\pi}{3}, \frac{5\pi}{3}\]
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
0
5
6
10
Solutions for 11: Trigonometric equations
![RD Sharma solutions for Mathematics [English] Class 11 chapter 11 - Trigonometric equations RD Sharma solutions for Mathematics [English] Class 11 chapter 11 - Trigonometric equations - Shaalaa.com](/images/9788193663004-mathematics-english-class-11_6:972cafaba17f4949992ada196fa0f041.jpg)
RD Sharma solutions for Mathematics [English] Class 11 chapter 11 - Trigonometric equations
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC 11 (Trigonometric equations) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 11 chapter 11 Trigonometric equations are Transformation Formulae, 180 Degree Plusminus X Function, 2X Function, 3X Function, Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications, Concept of Angle, Introduction of Trigonometric Functions, Signs of Trigonometric Functions, Domain and Range of Trigonometric Functions, Trigonometric Functions of Sum and Difference of Two Angles, Trigonometric Equations, Trigonometric Functions, Truth of the Identity, Negative Function Or Trigonometric Functions of Negative Angles, 90 Degree Plusminus X Function, Conversion from One Measure to Another, Graphs of Trigonometric Functions, Values of Trigonometric Functions at Multiples and Submultiples of an Angle, Sine and Cosine Formulae and Their Applications.
Using RD Sharma Mathematics [English] Class 11 solutions Trigonometric equations exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 11 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 11, Trigonometric equations Mathematics [English] Class 11 additional questions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.