Advertisements
Online Mock Tests
Chapters
2: Relations
3: Functions
4: Measurement of Angles
5: Trigonometric Functions
6: Graphs of Trigonometric Functions
7: Values of Trigonometric function at sum or difference of angles
▶ 8: Transformation formulae
9: Values of Trigonometric function at multiples and submultiples of an angle
10: Sine and cosine formulae and their applications
11: Trigonometric equations
12: Mathematical Induction
13: Complex Numbers
14: Quadratic Equations
15: Linear Inequations
16: Permutations
17: Combinations
18: Binomial Theorem
19: Arithmetic Progression
20: Geometric Progression
21: Some special series
22: Brief review of cartesian system of rectangular co-ordinates
23: The straight lines
24: The circle
25: Parabola
26: Ellipse
27: Hyperbola
28: Introduction to three dimensional coordinate geometry
29: Limits
30: Derivatives
31: Mathematical reasoning
32: Statistics
33: Probability
![RD Sharma solutions for Mathematics [English] Class 11 chapter 8 - Transformation formulae RD Sharma solutions for Mathematics [English] Class 11 chapter 8 - Transformation formulae - Shaalaa.com](/images/9788193663004-mathematics-english-class-11_6:972cafaba17f4949992ada196fa0f041.jpg)
Advertisements
Solutions for Chapter 8: Transformation formulae
Below listed, you can find solutions for Chapter 8 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 11.
RD Sharma solutions for Mathematics [English] Class 11 8 Transformation formulae Exercise 8.1 [Pages 6 - 7]
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
Prove that:
Prove that:
Prove that:
Show that :
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
RD Sharma solutions for Mathematics [English] Class 11 8 Transformation formulae Exercise 8.2 [Pages 17 - 19]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
RD Sharma solutions for Mathematics [English] Class 11 8 Transformation formulae Exercise 8.3 [Pages 20 - 21]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
RD Sharma solutions for Mathematics [English] Class 11 8 Transformation formulae Exercise 8.4 [Pages 21 - 22]
cos 40° + cos 80° + cos 160° + cos 240° =
0
1
- \[\frac{1}{2}\]
- \[- \frac{1}{2}\]
sin 163° cos 347° + sin 73° sin 167° =
0
- \[\frac{1}{2}\]
1
None of these
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
- \[\frac{3}{8}\]
- \[\frac{5}{8}\]
- \[\frac{3}{4}\]
- \[\frac{5}{4}\]
The value of cos 52° + cos 68° + cos 172° is
0
1
2
`3/2`
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
- \[\frac{1}{2}\]
- \[- \frac{1}{2}\]
−1
None of these
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
- \[- \frac{a}{b}\]
- \[- \frac{b}{a}\]
\[\sqrt{a^2 + b^2}\]
None of these
cos 35° + cos 85° + cos 155° =
0
- \[\frac{1}{\sqrt{3}}\]
- \[\frac{1}{\sqrt{2}}\]
cos 275°
The value of sin 50° − sin 70° + sin 10° is equal to
1
0
`1/2`
2
sin 47° + sin 61° − sin 11° − sin 25° is equal to
sin 36°
cos 36°
sin 7°
cos 7°
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
- \[\frac{m - 1}{m + 1}\]
- \[\frac{m + 2}{m - 2}\]
- \[\frac{m + 1}{m - 1}\]
None of these
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
tan B
cot B
tan 2 B
None of these
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
GP
HP
AP
None of these
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
2 sin 3x
0
1
none of these
If \[\tan\alpha = \frac{x}{x + 1}\] and
- \[\frac{\pi}{2}\]
- \[\frac{\pi}{2}\]
- \[\frac{\pi}{2}\]
- \[\frac{\pi}{2}\]
Solutions for 8: Transformation formulae
![RD Sharma solutions for Mathematics [English] Class 11 chapter 8 - Transformation formulae RD Sharma solutions for Mathematics [English] Class 11 chapter 8 - Transformation formulae - Shaalaa.com](/images/9788193663004-mathematics-english-class-11_6:972cafaba17f4949992ada196fa0f041.jpg)
RD Sharma solutions for Mathematics [English] Class 11 chapter 8 - Transformation formulae
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC 8 (Transformation formulae) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 11 chapter 8 Transformation formulae are Transformation Formulae, 180 Degree Plusminus X Function, 2X Function, 3X Function, Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications, Concept of Angle, Introduction of Trigonometric Functions, Signs of Trigonometric Functions, Domain and Range of Trigonometric Functions, Trigonometric Functions of Sum and Difference of Two Angles, Trigonometric Equations, Trigonometric Functions, Truth of the Identity, Negative Function Or Trigonometric Functions of Negative Angles, 90 Degree Plusminus X Function, Conversion from One Measure to Another, Graphs of Trigonometric Functions, Values of Trigonometric Functions at Multiples and Submultiples of an Angle, Sine and Cosine Formulae and Their Applications.
Using RD Sharma Mathematics [English] Class 11 solutions Transformation formulae exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 11 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 8, Transformation formulae Mathematics [English] Class 11 additional questions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.