Advertisements
Online Mock Tests
Chapters
2: Functions
3: Binary Operations
4: Inverse Trigonometric Functions
▶ 5: Algebra of Matrices
6: Determinants
7: Adjoint and Inverse of a Matrix
8: Solution of Simultaneous Linear Equations
9: Continuity
10: Differentiability
11: Differentiation
12: Higher Order Derivatives
13: Derivative as a Rate Measurer
14: Differentials, Errors and Approximations
15: Mean Value Theorems
16: Tangents and Normals
17: Increasing and Decreasing Functions
18: Maxima and Minima
19: Indefinite Integrals
20: Definite Integrals
21: Areas of Bounded Regions
22: Differential Equations
23: Algebra of Vectors
24: Scalar Or Dot Product
25: Vector or Cross Product
26: Scalar Triple Product
27: Direction Cosines and Direction Ratios
28: Straight Line in Space
29: The Plane
30: Linear programming
31: Probability
32: Mean and Variance of a Random Variable
33: Binomial Distribution
![RD Sharma solutions for Mathematics [English] Class 12 chapter 5 - Algebra of Matrices RD Sharma solutions for Mathematics [English] Class 12 chapter 5 - Algebra of Matrices - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
Advertisements
Solutions for Chapter 5: Algebra of Matrices
Below listed, you can find solutions for Chapter 5 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.
RD Sharma solutions for Mathematics [English] Class 12 5 Algebra of Matrices Exercise 5.1 [Pages 6 - 8]
If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?
If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`
then find (i) a22 + b21 (ii) a11 b11 + a22 b22
Let A be a matrix of order 3 × 4. If R1 denotes the first row of A and C2 denotes its second column, then determine the orders of matrices R1 and C2
Construct a 2 × 3 matrix whose elements aij are given by :
(i) aij = i . j
Construct a 2 × 3 matrix whose elements aij are given by :
(ii) aij = 2i − j
Construct a 2 × 3 matrix whose elements aij are given by :
(iii) aij = i + j
Construct a 2 × 3 matrix whose elements aij are given by :
(iv) aij =`(i+j)^2/2`
Construct a 2 × 2 matrix whose elements `a_(ij)`
are given by: `(i+j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`aij=(i-j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=(i-2_j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)= (2i +j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|2_i - 3_i|/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|-3i +j|/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=e^(2ix) sin (xj)`
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = i + j
Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:
ajj = i − j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = 2i
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
`a_(ij)=1/2= -3i + j `
Construct a 4 × 3 matrix whose elements are
`a_(ij)=2_i+ i/j`
Construct a 4 × 3 matrix whose elements are
`a_(ij)= (i-j)/(i+j )`
Construct a 4 × 3 matrix whose elements are
aij = i
find x, y , a and b if \[\begin{bmatrix}3x + 4y & 2 & x - 2y \\ a + b & 2a - b & - 1\end{bmatrix} = \begin{bmatrix}2 & 2 & 4 \\ 5 & - 5 & - 1\end{bmatrix}\]
Find x, y, a and b if
`[[2x-3y,a-b,3],[1,x+4y,3a+4b]]`=`[[1,-2,3],[1,6,29]]`
Find the values of a, b, c and d from the following equations:`[[2a + b,a-2b],[5c-d,4c + 3d ]]`= `[[4,- 3],[11,24]]`
Find x, y and z so that A = B, where`A= [[x-2,3,2x],[18z,y+2,6x]],``b=[[y,z,6],[6y,x,2y]]`
`If [[x,3x- y],[2x+z,3y -w ]]=[[3,2],[4,7]]` find x,y,z,w
`If [[x-y,z],[2x-y,w]]=[[-1,4],[0,5]]`Find X,Y,Z,W.
`If [[x + 3 , z + 4 , 2y-7 ],[4x + 6,a-1,0 ],[b-3,3b,z + 2c ]]= [[0,6,3y-2],[2x,-3,2c-2],[2b + 4,-21,0]]`Obtain the values of a, b, c, x, y and z.
`If [[2x +1 5x],[0 y^2 +1]]``= [[x+3 10],[0 26 ]]`, find the value of (x + y).
`If [[xy 4],[z+6 x+y ]]``=[[8 w],[0 6]]`, then find the values of X,Y,Z and W .
Given an example of
a row matrix which is also a column matrix,
Given an example of
a diagonal matrix which is not scalar,
Given an example of
a triangular matrix
The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.
For what values of x and y are the following matrices equal?
`A=[[2x+1 2y],[0 y^2 - 5y]]``B=[[x + 3 y^2 +2],[0 -6]]`
Find the values of x and y if
`[[X + 10,Y^2 + 2Y],[0, -4]]`=`[[3x +4,3],[0,y^2-5y]]`
For what values of a and b if A = B, where
`A = [[a + 4 3b],[8 -6]] B = [[2a +2 b^2+2],[8 b^2 - 5b]]`
Disclaimer: There is a misprint in the question, b2 − 5b should be written instead of b2 − 56.
RD Sharma solutions for Mathematics [English] Class 12 5 Algebra of Matrices Exercise 5.2 [Pages 18 - 19]
Compute the following sums:
`[[3 -2],[1 4]]+ [[-2 4 ],[1 3]]`
Compute the following sums:
`[[2 1 3],[0 3 5],[-1 2 5]]`+ `[[1 -2 3],[2 6 1],[0 -3 1]]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: B − 4C
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C
If A =`[[2,3],[5,7]],B =` `[[-1,0 ,2],[3,4,1]]`,`C= [[-1,2,3],[2,1,0]]`find : A + B and B + C
If A =`[[2 3],[5 7]],B =` `[[-1 0 2],[3 4 1]]`,`C= [[-1 2 3],[2 1 0]]`find
2B + 3A and 3C − 4B
Let A = `[[-1 0 2],[3 1 4]]``B=[[0 -2 5],[1 -3 1]]``and C = [[1 -5 2],[6 0 -4 ]]`Compute2A2-3B +4C :
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find: A − 2B
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
B + C − 2A
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
2A + 3B − 5C
Given the matrices
`A=[[2,1,1],[3,-1,0],[0,2,4]]` , `B=[[9,7,-1],[3,5,4],[2,1,6]]` `and C=[[2,-4,3],[1,-1,0],[9,4,5]]`
Verify that (A + B) + C = A + (B + C).
Find matrices X and Y, if X + Y =`[[5 2],[0 9]]`
and X − Y = `[[3 6],[0 -1]]`
Find X if Y =`[[3 2],[1 4]]`and 2X + Y =`[[1 0],[-3 2]]`
Find matrices X and Y, if 2X − Y = `[[6 -6 0],[-4 2 1]]`and X + 2Y =`[[3 2 5],[-2 1 -7 ]]`
f X − Y =`[[1 1 1],[1 1 0],[1 0 0]]` and X + Y = `[[3 5 1],[-1 1 1],[11 8 0]]`find X and Y.
Find matrix A, if `[[1 2 -1],[0 4 9]]`
`+ A = [[9 -1 4],[-2 1 3]]`
If A =`[[9 1],[7 8]],B=[[1 5],[7 12]]`find matrix C such that 5A + 3B + 2C is a null matrix.
If A = `[[2 -2],[4 2],[-5 1]],B=[[8 0],[4 -2],[3 6]]`
, find matrix X such that 2A + 3X = 5B.
If A = `[[1 -3 2],[2 0 2]]`and `B = [[2 -1 -1],[1 0 -1]]` find the matrix C such that A + B + C is
, find the matrix C such that A + B + C is zero matrix.
Find x, y satisfying the matrix equations
`[[X-Y 2 -2],[4 x 6]]+[[3 -2 2],[1 0 -1]]=[[ 6 0 0],[ 5 2x+y 5]]`
Find x, y satisfying the matrix equations
`[x y + 2 z-3 ] + [ y 4 5]=[4 9 12]`
Find x, y satisfying the matrix equations
`x[[2],[1]]+y[[3],[5]]+[[-8],[-11]]=0`
If 2 `[[3 4],[5 x]]+[[1 y],[0 1]]=[[7 0],[10 5]]` find x and y.
Find the value of λ, a non-zero scalar, if λ
Find a matrix X such that 2A + B + X = O, where
`A= [[-1 2],[3 4]],B= [[3 -2],[1 5]]`
Find a matrix X such that 2A + B + X = O, where
If A = `[[8 0],[4 -2],[3 6]]` and B = `[[2 -2],[4 2],[-5 1]]`
, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.
Find x, y, z and t, if
`3[[x y],[z t]]=[[x 6],[-1 2t]]+[[4 x+y],[z+t 3]]`
Find x, y, z and t, if
`2[[x 5],[z t]]+[[x 6],[-1 2t]]=[[7 14],[15 14]]`
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`
In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
RD Sharma solutions for Mathematics [English] Class 12 5 Algebra of Matrices Exercise 5.3 [Pages 41 - 48]
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Show that AB ≠ BA in each of the following cases:
`A= [[5 -1],[6 7]]`And B =`[[2 1],[3 4]]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Show that AB ≠ BA in each of the following cases:
`A=[[1 3 0],[1 1 0],[4 1 0]]`And B=`[[0 1 0],[1 0 0],[0 5 1]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A=[[3 2],[-1 0],[-1 1]]` and `B= [[4 5 6],[0 1 2]]`
Compute the products AB and BA whichever exists in each of the following cases:
A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
If A = `[[2 -1],[3 2]]` and B = `[[0 4],[-1 7]]`find 3A2 − 2B + I
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A =-[[1 2 0],[-1 0 1]]`,`B=[[1 0],[-1 2],[0 3]]` and C= `[[1],[-1]]`
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
If w is a complex cube root of unity, show that
`([[1 w w^2],[w w^2 1],[w^2 1 w]]+[[w w^2 1],[w^2 1 w],[w w^2 1]])[[1],[w],[w^2]]=[[0],[0],[0]]`
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
If [1 1 x] `[[1 0 2],[0 2 1],[2 1 0]] [[1],[1],[1]]` = 0, find x.
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
\[A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\],show that A2 − 2A + 3I2 = O
Show that the matrix \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]satisfies the equation A3 − 4A2 + A = O
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.
If A=, find k such that A2 = kA − 2I2
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
If A=then find λ, μ so that A2 = λA + μI
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
If f (x) = x2 − 2x, find f (A), where A=
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
Without using the concept of inverse of a matrix, find the matrix `[[x y],[z u]]` such that
`[[5 -7],[-2 3]][[x y],[z u]]=[[-16 -6],[7 2]]`
Find the matrix A such that `[[1 1],[0 1]]A=[[3 3 5],[1 0 1]]`
Find the matrix A such that `A=[[1,2,3],[4,5,6]]=` `[[-7,-8,-9],[2,4,6]]`
Find the matrix A such that `[[4],[1],[3]] A=[[-4,8,4],[-1,2,1],[-3,6,3]]`
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`
If `A=[[0,0],[4,0]]` find `A^16`
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + X = 0.
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n ∈ N.`
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
If A = diag (a, b, c), show that An = diag (an, bn, cn) for all positive integer n.
If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.
A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both matrices XY and YX exist. Find a and b. Can you say XY and YX are of the same type? Are they equal.
Give examples of matrices
A and B such that AB ≠ BA
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
Give examples of matrices
A and B such that AB = O but BA ≠ O.
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
If A and B are square matrices of the same order, explain, why in general
(A − B)2 ≠ A2 − 2AB + B2
If A and B are square matrices of the same order, explain, why in general
(A + B) (A − B) ≠ A2 − B2
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ C, A ≠ O.
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:
(i) ₹50 (ii) ₹20 (iii) ₹40
The number of attempts made in three villages X, Y and Z are given below:
(i) (ii) (iii)
X 400 300 100
Y 300 250 75
Z 500 400 150
Find the total cost incurred by the organisation for three villages separately, using matrices.
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}"Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
RD Sharma solutions for Mathematics [English] Class 12 5 Algebra of Matrices Exercise 5.4 [Pages 54 - 55]
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(AB)T = BT AT
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
A = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{bmatrix} and B = \begin{bmatrix}1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix} . Find AT, BT and verify that ,
(A B)T = BT + AT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If\[A = \begin{bmatrix}\cos \alpha & \sin \alpha \\ - \sin \alpha & \cos \alpha\end{bmatrix}\] , then verify that AT A = I2.
If li, mi, ni, i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]
RD Sharma solutions for Mathematics [English] Class 12 5 Algebra of Matrices Exercise 5.5 [Pages 60 - 61]
If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.
Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
Express the following matrix as the sum of a symmetric and skew-symmetric matrix and verify your result:
RD Sharma solutions for Mathematics [English] Class 12 5 Algebra of Matrices Exercise 5.6 [Pages 62 - 65]
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
write AB.
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
If \[A = \begin{bmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{bmatrix}\] , find x satisfying 0 < x < \[\frac{\pi}{2}\] when A + AT = I
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
If `[x 2] [[3],[4]] = 2` , find x
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
For any square matrix write whether AAT is symmetric or skew-symmetric.
If ` A =[a_ij]` is a skew-symmetric matrix, then write the value of ` Σ_i a_ij`
If A = [aij] is a skew-symmetric matrix, then write the value of \[\sum_i \sum_j\] aij.
If A and B are symmetric matrices, then write the condition for which AB is also symmetric.
If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If B is a symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.
If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.
If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.
If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
Write a square matrix which is both symmetric as well as skew-symmetric.
Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]
If \[\begin{bmatrix}x + 3 & 4 \\ y - 4 & x + y\end{bmatrix} = \begin{bmatrix}5 & 4 \\ 3 & 9\end{bmatrix}\] , find x and y
Find the value of x from the following: `[[2x - y 5],[ 3 y ]]` = `[[6 5 ],[3 - 2\]]`
Find the value of y, if \[\begin{bmatrix}x - y & 2 \\ x & 5\end{bmatrix} = \begin{bmatrix}2 & 2 \\ 3 & 5\end{bmatrix}\]
Find the value of x, if \[\begin{bmatrix}3x + y & - y \\ 2y - x & 3\end{bmatrix} = \begin{bmatrix}1 & 2 \\ - 5 & 3\end{bmatrix}\]
If matrix A = [1 2 3], write AAT.
if \[\begin{bmatrix}2x + y & 3y \\ 0 & 4\end{bmatrix} = \begin{bmatrix}6 & 0 \\ 6 & 4\end{bmatrix}\] , then find x.
If \[A = \begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\] , find A + AT.
If \[\begin{bmatrix}a + b & 2 \\ 5 & b\end{bmatrix} = \begin{bmatrix}6 & 5 \\ 2 & 2\end{bmatrix}\] , then find a.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?
What is the total number of 2 × 2 matrices with each entry 0 or 1?
If \[\begin{bmatrix}x & x - y \\ 2x + y & 7\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 8 & 7\end{bmatrix}\] , then find the value of y.
If a matrix has 5 elements, write all possible orders it can have.
For a 2 × 2 matrix A = [aij] whose elements are given by
If \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.
If \[\begin{bmatrix}9 & - 1 & 4 \\ - 2 & 1 & 3\end{bmatrix} = A + \begin{bmatrix}1 & 2 & - 1 \\ 0 & 4 & 9\end{bmatrix}\] , then find matrix A.
If \[\begin{bmatrix}a - b & 2a + c \\ 2a - b & 3c + d\end{bmatrix} = \begin{bmatrix}- 1 & 5 \\ 0 & 13\end{bmatrix}\] , find the value of b.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If matrix \[A = \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix}\] and A2 = pA, then write the value of p.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.
If \[\begin{bmatrix}x & 1\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 2 & 0\end{bmatrix} = O\] , find x.
If \[\begin{bmatrix}a + 4 & 3b \\ 8 & - 6\end{bmatrix} = \begin{bmatrix}2a + 2 & b + 2 \\ 8 & a - 8b\end{bmatrix}\] , write the value of a − 2b.
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
If \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
If \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (x, y).
Matrix A = \[\begin{bmatrix}0 & 2b & - 2 \\ 3 & 1 & 3 \\ 3a & 3 & - 1\end{bmatrix}\] is given to be symmetric, find values of a and b.
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
`If A = ([3 5] , [7 9])` is written as A = P + Q, where as A = p + Q , Where P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P.
Let A and B be matrices of orders 3 x 2 and 2 x
4 respectively. Write the order of matrix AB.
RD Sharma solutions for Mathematics [English] Class 12 5 Algebra of Matrices Exercise 5.7 [Pages 65 - 69]
If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .
a null matrix
a unit matrix
−A
A
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
`[[0,I],[I,0]]`
`[[0,0],[0,0]]`
`[[1,0],[0,1]]`
`[[0,I],[I,0]]`
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
B
A
1
0
If AB = A and BA = B, where A and B are square matrices, then
B2 = B and A2 = A
B2 ≠ B and A2 = A
A2 ≠ A , B2 =B
A2 ≠ A , B2 ≠ B
If A and B are two matrices such n that AB = B and BA = A , `A^2 + B^2` is equal to
2 AB
2 BA
A + B
AB
If \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.
3
4
6
7
If the matrix AB is zero, then
It is not necessary that either A = O or, B = O
A = O or B = O
A = O and B = O
all the above statements are wrong
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
\begin{bmatrix}a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a\end{bmatrix}
\[\begin{bmatrix}a^n & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\]
\[\begin{bmatrix}a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n\end{bmatrix}\]
\[\begin{bmatrix}na & 0 & 0 \\ 0 & na & 0 \\ 0 & 0 & na\end{bmatrix}\]
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
null matrix
singular matrix
unit-matrix
non-singular matrix
If \[A = \begin{bmatrix}n & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & n\end{bmatrix} \text {and B} = \begin{bmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c^1 & c_2 & c_3\end{bmatrix}\]then AB is equal to
B
nB
`B^n`
A+B
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
\[\begin{bmatrix}1 & na \\ 0 & 1\end{bmatrix}\]
\[\begin{bmatrix}1 & n^2 a \\ 0 & 1\end{bmatrix}\]
\[\begin{bmatrix}1 & na \\ 0 & 0\end{bmatrix}\]
\[\begin{bmatrix}n & na \\ 0 & n\end{bmatrix}\]
If \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals
0
1
2
none of these
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2, values of a and b are
a = 4, b = 1
a = 1, b = 4
a = 0, b = 4
a = 2, b = 4
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
1 + α2 + βγ = 0
1 − α2 + βγ = 0
1 − α2 − βγ = 0
1 + α2 − βγ = 0
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
Ak
k + A
kA
kS
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
A
I-A
I
3A
If a matrix A is both symmetric and skew-symmetric, then
A is a diagonal matrix
A is a zero matrix
A is a scalar matrix
A is a square matrix
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
a skew-symmetric matrix
a symmetric matrix
a diagonal matrix
an uppertriangular matrix
If A is a square matrix, then AA is a
skew-symmetric matrix
symmetric matrix
diagonal matrix
none of these
If A and B are symmetric matrices, then ABA is
symmetric matrix
skew-symmetric matrix
diagonal matrix
scalar matrix
If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\] and A = AT, then
x = 0, y = 5
x + y = 5
x = y
none of these
If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined. Then, B is of the type
3 × 4
3 × 3
4 × 4
4 × 3
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
A is a skew-symmetric matrix and | A | = 0
A is symmetric matrix and | A | is a square
A is symmetric matrix and | A | = 0
none of these.
If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\] then AT + A = I2, if
θ = n π, n ∈ Z
θ = (2n + 1) \[\frac{\pi}{2}\] n ∈ Z
θ = 2n π +\[\frac{\pi}{3}\] n ∈ Z
none of these
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
\[\begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix}\]
\[\begin{bmatrix}2 & 4 & - 5 \\ 0 & 3 & 7 \\ - 3 & 1 & 2\end{bmatrix}\]
\[\begin{bmatrix}4 & 4 & - 8 \\ 4 & 6 & 8 \\ - 8 & 8 & 4\end{bmatrix}\]
\[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
Out of the given matrices, choose that matrix which is a scalar matrix:
\[\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
\[\begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix}\]
\[\begin{bmatrix}0 & 0 \\ 0 & 0 \\ 0 & 0\end{bmatrix}\]
\[\begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
27
18
81
512
Which of the given values of x and y make the following pairs of matrices equal? \[\begin{bmatrix}3x + 7 & 5 \\ y + 1 & 2 - 3x\end{bmatrix}, \begin{bmatrix}0 & y - 2 \\ 8 & 4\end{bmatrix}\]
x =\[- \frac{1}{3}\],y = 7
y = 7, x = \[- \frac{2}{3}\]
x = \[- \frac{1}{3}\] 4 =\[- \frac{2}{5}\]
Not possible to find
If \[A = \begin{bmatrix}0 & 2 \\ 3 & - 4\end{bmatrix}\] and \[kA = \begin{bmatrix}0 & 3a \\ 2b & 24\end{bmatrix}\] then the values of k, a, b, are respectively
−6, −12, −18
−6, 4, 9
−6, −4, −9
−6, 12, 18
If \[I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, J = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} and B = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\] then B equals )
I cos θ + J sin θ
I sin θ + J cos θ
I cos θ − J sin θ
−I cos θ + J sin θ
The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is
17
25
3
12
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
nk
n + k
\[\frac{n}{k}\]
none of these
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
square matrix
diagonal matrix
unit matrixn
none of these
The number of possible matrices of order 3 × 3 with each entry 2 or 0 is
9
27
81
none of these
If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\]
x = 3 , y =-1
x = 2 , y= 3
x= 2 , y= 4
x = 3, y= 3
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
A
I-A
I+A
3A
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
m × 3
3 × 3
m × n
3 × n
If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is
Disclaimer: option (a) and (d) both are the same.
m × n
n × n
n × m
m × n
If A and B are matrices of the same order, then ABT − BAT is a
skew symmetric matrix
null matrix
unit matrix
symmetric matrix
If matrix \[A = \left[ a_{ij} \right]_{2 \times 2}\] where
I
A
O
-I
If \[A = \frac{1}{\pi}\begin{bmatrix}\sin^{- 1} \left( \ pix \right) & \ tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & \cot^{- 1} \left( \ pix \right)\end{bmatrix}, B = \frac{1}{\pi}\begin{bmatrix}- \cos^{- 1} \left( \ pix \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & - \tan^{- 1} \left( \ pix \right)\end{bmatrix}\]
A − B is equal to
I
0
2I
`1/2 I`
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
A2 − B2
A2 − BA − AB − B2
A2 − B2 + BA − AB
A2 − BA + B2 + AB
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
only AB is defined
only BA is defined
AB and BA both are defined
AB and BA both are not defined
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
diagonal matrix
symmetric matrix
skew-symmetric matrix
scalar matrix
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
identity matrix
symmetric matrix
skew-symmetric matrix
diagonal matrix
Solutions for 5: Algebra of Matrices
![RD Sharma solutions for Mathematics [English] Class 12 chapter 5 - Algebra of Matrices RD Sharma solutions for Mathematics [English] Class 12 chapter 5 - Algebra of Matrices - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
RD Sharma solutions for Mathematics [English] Class 12 chapter 5 - Algebra of Matrices
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 5 (Algebra of Matrices) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 12 chapter 5 Algebra of Matrices are Inverse of a Matrix by Elementary Transformation, Multiplication of Two Matrices, Negative of Matrix, Properties of Matrix Addition, Transpose of a Matrix, Subtraction of Matrices, Addition of Matrices, Symmetric and Skew Symmetric Matrices, Types of Matrices, Proof of the Uniqueness of Inverse, Invertible Matrices, Multiplication of Matrices, Properties of Multiplication of Matrices, Equality of Matrices, Order of a Matrix, Matrices Notation, Introduction of Matrices, Multiplication of a Matrix by a Scalar, Properties of Scalar Multiplication of a Matrix, Properties of Transpose of the Matrices, Elementary Transformations, Introduction of Operations on Matrices.
Using RD Sharma Mathematics [English] Class 12 solutions Algebra of Matrices exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 5, Algebra of Matrices Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.