Advertisements
Online Mock Tests
Chapters
2: Relations
3: Functions
4: Measurement of Angles
5: Trigonometric Functions
6: Graphs of Trigonometric Functions
7: Values of Trigonometric function at sum or difference of angles
8: Transformation formulae
9: Values of Trigonometric function at multiples and submultiples of an angle
10: Sine and cosine formulae and their applications
11: Trigonometric equations
12: Mathematical Induction
13: Complex Numbers
14: Quadratic Equations
15: Linear Inequations
16: Permutations
17: Combinations
18: Binomial Theorem
19: Arithmetic Progression
20: Geometric Progression
21: Some special series
22: Brief review of cartesian system of rectangular co-ordinates
23: The straight lines
24: The circle
25: Parabola
26: Ellipse
27: Hyperbola
28: Introduction to three dimensional coordinate geometry
29: Limits
▶ 30: Derivatives
31: Mathematical reasoning
32: Statistics
33: Probability
![RD Sharma solutions for Mathematics [English] Class 11 chapter 30 - Derivatives RD Sharma solutions for Mathematics [English] Class 11 chapter 30 - Derivatives - Shaalaa.com](/images/9788193663004-mathematics-english-class-11_6:972cafaba17f4949992ada196fa0f041.jpg)
Advertisements
Solutions for Chapter 30: Derivatives
Below listed, you can find solutions for Chapter 30 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 11.
RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.1 [Page 3]
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.2 [Pages 25 - 26]
\[\frac{2}{x}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{1}{x^3}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{x + 2}{3x + 5}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
(x + 2)3
(x2 + 1) (x − 5)
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
eax + b
x ex
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
x cos x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan2 x
tan (2x + 1)
tan 2x
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
\[\tan \sqrt{x}\]
RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.3 [Pages 33 - 34]
x4 − 2 sin x + 3 cos x
3x + x3 + 33
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
ex log a + ea long x + ea log a
(2x2 + 1) (3x + 2)
log3 x + 3 loge x + 2 tan x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
cos (x + a)
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.4 [Page 39]
x3 sin x
x3 ex
x2 ex log x
xn tan x
xn loga x
(x3 + x2 + 1) sin x
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x2 sin x log x
x5 ex + x6 log x
(x sin x + cos x) (x cos x − sin x)
(x sin x + cos x ) (ex + x2 log x)
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
sin2 x
logx2 x
\[e^x \log \sqrt{x} \tan x\]
x3 ex cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x4 (5 sin x − 3 cos x)
(2x2 − 3) sin x
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
x−3 (5 + 3x)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b) (a + d)2
(ax + b)n (cx + d)n
RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.5 [Page 44]
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.6 [Pages 46 - 47]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.7 [Pages 47 - 48]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
\[\frac{3}{2}\]
1
0
−1
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
\[\frac{5}{4}\]
\[\frac{4}{5}\]
1
0
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
y + 1
y − 1
y
y2
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
150
−50
−150
50
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
\[- \frac{4x}{\left( x^2 - 1 \right)^2}\]
\[- \frac{4x}{x^2 - 1}\]
\[\frac{1 - x^2}{4x}\]
\[\frac{4x}{x^2 - 1}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
1
\[\frac{1}{2}\]
\[\frac{1}{\sqrt{2}}\]
0
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
5050
5049
5051
50051
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
\[\frac{1}{100}\]
100
50
0
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
−2
0
\[\frac{1}{2}\]
does not exist
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
cos 9
sin 9
0
1
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
1
0
\[\frac{1}{2}\]
does not exist
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
0
1
−1
\[\frac{1}{2}\]
Solutions for 30: Derivatives
![RD Sharma solutions for Mathematics [English] Class 11 chapter 30 - Derivatives RD Sharma solutions for Mathematics [English] Class 11 chapter 30 - Derivatives - Shaalaa.com](/images/9788193663004-mathematics-english-class-11_6:972cafaba17f4949992ada196fa0f041.jpg)
RD Sharma solutions for Mathematics [English] Class 11 chapter 30 - Derivatives
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC 30 (Derivatives) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 11 chapter 30 Derivatives are Limits of Exponential Functions, Derivative of Slope of Tangent of the Curve, Theorem for Any Positive Integer n, Graphical Interpretation of Derivative, Derive Derivation of x^n, Algebra of Derivative of Functions, Derivative of Polynomials and Trigonometric Functions, Derivative Introduced as Rate of Change Both as that of Distance Function and Geometrically, Intuitive Idea of Derivatives, Introduction of Limits, Introduction to Calculus, Algebra of Limits, Limits of Polynomials and Rational Functions, Introduction of Derivatives, Limits of Trigonometric Functions, Limits of Logarithmic Functions.
Using RD Sharma Mathematics [English] Class 11 solutions Derivatives exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 11 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 30, Derivatives Mathematics [English] Class 11 additional questions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.