English

RD Sharma solutions for Mathematics [English] Class 11 chapter 30 - Derivatives [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 11 chapter 30 - Derivatives - Shaalaa.com
Advertisements

Solutions for Chapter 30: Derivatives

Below listed, you can find solutions for Chapter 30 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 11.


Exercise 30.1Exercise 30.2Exercise 30.3Exercise 30.4Exercise 30.5Exercise 30.6Exercise 30.7
Exercise 30.1 [Page 3]

RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.1 [Page 3]

Exercise 30.1 | Q 1 | Page 3

Find the derivative of f (x) = 3x at x = 2 

Exercise 30.1 | Q 2 | Page 3

Find the derivative of f (x) = x2 − 2 at x = 10

Exercise 30.1 | Q 3 | Page 3

Find the derivative of f (x) = 99x at x = 100 

Exercise 30.1 | Q 4 | Page 3

Find the derivative of f (xx at x = 1

 

Exercise 30.1 | Q 5 | Page 3

Find the derivative of f (x) = cos x at x = 0

Exercise 30.1 | Q 6 | Page 3

Find the derivative of (x) = tan x at x = 0 

Exercise 30.1 | Q 7.1 | Page 3

Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 

Exercise 30.1 | Q 7.2 | Page 3

Find the derivative of the following function at the indicated point:

Exercise 30.1 | Q 7.3 | Page 3

Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 

Exercise 30.1 | Q 7.4 | Page 3

Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]

Exercise 30.2 [Pages 25 - 26]

RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.2 [Pages 25 - 26]

Exercise 30.2 | Q 1.01 | Page 25

\[\frac{2}{x}\]

Exercise 30.2 | Q 1.02 | Page 25

\[\frac{1}{\sqrt{x}}\]

Exercise 30.2 | Q 1.03 | Page 25

\[\frac{1}{x^3}\]

Exercise 30.2 | Q 1.04 | Page 25

\[\frac{x^2 + 1}{x}\]

Exercise 30.2 | Q 1.05 | Page 25

\[\frac{x^2 - 1}{x}\]

Exercise 30.2 | Q 1.06 | Page 25

\[\frac{x + 1}{x + 2}\]

Exercise 30.2 | Q 1.07 | Page 25

\[\frac{x + 2}{3x + 5}\]

Exercise 30.2 | Q 1.08 | Page 25

k xn

Exercise 30.2 | Q 1.09 | Page 25

\[\frac{1}{\sqrt{3 - x}}\]

Exercise 30.2 | Q 1.1 | Page 25

 x2 + x + 3

Exercise 30.2 | Q 1.11 | Page 25

(x + 2)3

Exercise 30.2 | Q 1.12 | Page 25

 (x2 + 1) (x − 5)

Exercise 30.2 | Q 1.13 | Page 25

 (x2 + 1) (x − 5)

Exercise 30.2 | Q 1.14 | Page 25

\[\sqrt{2 x^2 + 1}\]

Exercise 30.2 | Q 1.15 | Page 25

\[\frac{2x + 3}{x - 2}\] 

Exercise 30.2 | Q 2.01 | Page 25

Differentiate each of the following from first principle:

ex

Exercise 30.2 | Q 2.02 | Page 25

Differentiate  of the following from first principle:

e3x

Exercise 30.2 | Q 2.03 | Page 25

Differentiate  of the following from first principle:

 eax + b

Exercise 30.2 | Q 2.04 | Page 25

x ex

Exercise 30.2 | Q 2.05 | Page 25

Differentiate  of the following from first principle: 

− x

Exercise 30.2 | Q 2.06 | Page 25

Differentiate of the following from first principle:

(−x)−1

Exercise 30.2 | Q 2.07 | Page 25

Differentiate  of the following from first principle:

sin (x + 1)

Exercise 30.2 | Q 2.08 | Page 25

Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]

Exercise 30.2 | Q 2.09 | Page 25

Differentiate  of the following from first principle:

 x sin x

Exercise 30.2 | Q 2.1 | Page 25

Differentiate of the following from first principle:

 x cos x

Exercise 30.2 | Q 2.11 | Page 25

Differentiate  of the following from first principle:

sin (2x − 3)

Exercise 30.2 | Q 3.01 | Page 26

Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 

Exercise 30.2 | Q 3.02 | Page 26

Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]

Exercise 30.2 | Q 3.03 | Page 26

Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]

Exercise 30.2 | Q 3.04 | Page 26

Differentiate each of the following from first principle:

 x2 sin x

Exercise 30.2 | Q 3.05 | Page 26

Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]

Exercise 30.2 | Q 3.06 | Page 26

Differentiate each of the following from first principle: 

sin x + cos x

Exercise 30.2 | Q 3.07 | Page 26

Differentiate each of the following from first principle:

x2 e

Exercise 30.2 | Q 3.08 | Page 26

Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]

Exercise 30.2 | Q 3.09 | Page 26

Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]

Exercise 30.2 | Q 3.1 | Page 26

Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]

Exercise 30.2 | Q 3.11 | Page 26

Differentiate each of the following from first principle:

\[a^\sqrt{x}\]

Exercise 30.2 | Q 3.12 | Page 26

Differentiate each of the following from first principle:

\[3^{x^2}\]

Exercise 30.2 | Q 4.1 | Page 26

tan2 

Exercise 30.2 | Q 4.2 | Page 26

tan (2x + 1) 

Exercise 30.2 | Q 4.3 | Page 26

 tan 2

Exercise 30.2 | Q 4.4 | Page 26

\[\sqrt{\tan x}\]

Exercise 30.2 | Q 5.1 | Page 26

\[\sin \sqrt{2x}\]

Exercise 30.2 | Q 5.2 | Page 26

\[\cos \sqrt{x}\]

Exercise 30.2 | Q 5.3 | Page 26

\[\tan \sqrt{x}\]

Exercise 30.2 | Q 5.4 | Page 26

\[\tan \sqrt{x}\] 

Exercise 30.3 [Pages 33 - 34]

RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.3 [Pages 33 - 34]

Exercise 30.3 | Q 1 | Page 33

x4 − 2 sin x + 3 cos x

Exercise 30.3 | Q 2 | Page 33

3x + x3 + 33

Exercise 30.3 | Q 3 | Page 33

\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]

Exercise 30.3 | Q 4 | Page 33

ex log a + ea long x + ea log a

Exercise 30.3 | Q 5 | Page 33

(2x2 + 1) (3x + 2) 

Exercise 30.3 | Q 6 | Page 33

 log3 x + 3 loge x + 2 tan x

Exercise 30.3 | Q 7 | Page 34

\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 

Exercise 30.3 | Q 8 | Page 34

\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 

Exercise 30.3 | Q 9 | Page 34

\[\frac{2 x^2 + 3x + 4}{x}\] 

Exercise 30.3 | Q 10 | Page 34

\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 

Exercise 30.3 | Q 11 | Page 34

\[\frac{a \cos x + b \sin x + c}{\sin x}\]

Exercise 30.3 | Q 12 | Page 34

2 sec x + 3 cot x − 4 tan x

Exercise 30.3 | Q 13 | Page 34

a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an

Exercise 30.3 | Q 14 | Page 34

\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 

Exercise 30.3 | Q 15 | Page 34

\[\frac{(x + 5)(2 x^2 - 1)}{x}\]

Exercise 30.3 | Q 16 | Page 34

\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 

Exercise 30.3 | Q 17 | Page 34

cos (x + a)

Exercise 30.3 | Q 19 | Page 34

\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]

Exercise 30.3 | Q 20 | Page 34

\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]

Exercise 30.3 | Q 21 | Page 34

Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.

Exercise 30.3 | Q 22 | Page 34

\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  

Exercise 30.3 | Q 23 | Page 34

Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.

Exercise 30.3 | Q 24 | Page 34

\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 

Exercise 30.3 | Q 25 | Page 34

If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 

Exercise 30.3 | Q 26 | Page 34

For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 
Exercise 30.4 [Page 39]

RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.4 [Page 39]

Exercise 30.4 | Q 1 | Page 39

x3 sin 

Exercise 30.4 | Q 2 | Page 39

x3 e

Exercise 30.4 | Q 3 | Page 39

x2 ex log 

Exercise 30.4 | Q 4 | Page 39

xn tan 

Exercise 30.4 | Q 5 | Page 39

xn loga 

Exercise 30.4 | Q 6 | Page 39

(x3 + x2 + 1) sin 

Exercise 30.4 | Q 7 | Page 39

sin x cos x

Exercise 30.4 | Q 8 | Page 39

\[\frac{2^x \cot x}{\sqrt{x}}\] 

Exercise 30.4 | Q 9 | Page 39

x2 sin x log 

Exercise 30.4 | Q 10 | Page 39

x5 ex + x6 log 

Exercise 30.4 | Q 11 | Page 39

(x sin x + cos x) (x cos x − sin x

Exercise 30.4 | Q 12 | Page 39

(x sin x + cos x ) (ex + x2 log x

Exercise 30.4 | Q 13 | Page 39

(1 − 2 tan x) (5 + 4 sin x)

Exercise 30.4 | Q 14 | Page 39

(1 +x2) cos x

Exercise 30.4 | Q 15 | Page 39

sin2 

Exercise 30.4 | Q 16 | Page 39

logx2 x

Exercise 30.4 | Q 17 | Page 39

\[e^x \log \sqrt{x} \tan x\] 

Exercise 30.4 | Q 18 | Page 39

x3 ex cos 

Exercise 30.4 | Q 19 | Page 39

\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 

Exercise 30.4 | Q 20 | Page 39

x4 (5 sin x − 3 cos x)

Exercise 30.4 | Q 21 | Page 39

(2x2 − 3) sin 

Exercise 30.4 | Q 22 | Page 39

x5 (3 − 6x−9

Exercise 30.4 | Q 23 | Page 39

x4 (3 − 4x−5)

Exercise 30.4 | Q 24 | Page 39

x−3 (5 + 3x

Exercise 30.4 | Q 25 | Page 39

Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 

Exercise 30.4 | Q 26.1 | Page 39

Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2

Exercise 30.4 | Q 26.2 | Page 39

Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 

Exercise 30.4 | Q 26.3 | Page 39

Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)

Exercise 30.4 | Q 27 | Page 39

(ax + b) (a + d)2

Exercise 30.4 | Q 28 | Page 39

(ax + b)n (cx d)

Exercise 30.5 [Page 44]

RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.5 [Page 44]

Exercise 30.5 | Q 1 | Page 44

\[\frac{x^2 + 1}{x + 1}\] 

Exercise 30.5 | Q 2 | Page 44

\[\frac{2x - 1}{x^2 + 1}\] 

Exercise 30.5 | Q 3 | Page 44

\[\frac{x + e^x}{1 + \log x}\] 

Exercise 30.5 | Q 4 | Page 44

\[\frac{e^x - \tan x}{\cot x - x^n}\] 

Exercise 30.5 | Q 5 | Page 44

\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 

Exercise 30.5 | Q 6 | Page 44

\[\frac{x}{1 + \tan x}\] 

Exercise 30.5 | Q 7 | Page 44

\[\frac{1}{a x^2 + bx + c}\] 

Exercise 30.5 | Q 8 | Page 44

\[\frac{e^x}{1 + x^2}\] 

Exercise 30.5 | Q 9 | Page 44

\[\frac{e^x + \sin x}{1 + \log x}\] 

Exercise 30.5 | Q 10 | Page 44

\[\frac{x \tan x}{\sec x + \tan x}\]

Exercise 30.5 | Q 11 | Page 44

\[\frac{x \sin x}{1 + \cos x}\]

Exercise 30.5 | Q 12 | Page 44

\[\frac{2^x \cot x}{\sqrt{x}}\] 

Exercise 30.5 | Q 13 | Page 44

\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]

Exercise 30.5 | Q 14 | Page 44

\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 

Exercise 30.5 | Q 15 | Page 44

\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 

Exercise 30.5 | Q 16 | Page 44

\[\frac{a + \sin x}{1 + a \sin x}\] 

Exercise 30.5 | Q 17 | Page 44

\[\frac{{10}^x}{\sin x}\] 

Exercise 30.5 | Q 18 | Page 44

\[\frac{1 + 3^x}{1 - 3^x}\]

Exercise 30.5 | Q 19 | Page 44

\[\frac{3^x}{x + \tan x}\] 

Exercise 30.5 | Q 20 | Page 44

\[\frac{1 + \log x}{1 - \log x}\] 

Exercise 30.5 | Q 21 | Page 44

\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]

Exercise 30.5 | Q 22 | Page 44

\[\frac{x}{1 + \tan x}\] 

Exercise 30.5 | Q 23 | Page 44

\[\frac{a + b \sin x}{c + d \cos x}\] 

Exercise 30.5 | Q 24 | Page 44

\[\frac{p x^2 + qx + r}{ax + b}\]

Exercise 30.5 | Q 25 | Page 44

\[\frac{\sec x - 1}{\sec x + 1}\] 

Exercise 30.5 | Q 26 | Page 44

\[\frac{x^5 - \cos x}{\sin x}\] 

Exercise 30.5 | Q 27 | Page 44

\[\frac{x + \cos x}{\tan x}\] 

Exercise 30.5 | Q 28 | Page 44

\[\frac{x}{\sin^n x}\]

Exercise 30.5 | Q 29 | Page 44

\[\frac{ax + b}{p x^2 + qx + r}\] 

Exercise 30.5 | Q 30 | Page 44

\[\frac{1}{a x^2 + bx + c}\] 

Exercise 30.6 [Pages 46 - 47]

RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.6 [Pages 46 - 47]

Exercise 30.6 | Q 1 | Page 46

Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 

Exercise 30.6 | Q 2 | Page 46

Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]

Exercise 30.6 | Q 3 | Page 47

If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 

Exercise 30.6 | Q 4 | Page 47

If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]

Exercise 30.6 | Q 5 | Page 47

Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]

Exercise 30.6 | Q 6 | Page 47

Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]

Exercise 30.6 | Q 7 | Page 47

If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]

Exercise 30.6 | Q 8 | Page 47

Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.

Exercise 30.6 | Q 9 | Page 47

If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 

Exercise 30.6 | Q 10 | Page 47

Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]

Exercise 30.6 | Q 11 | Page 47

If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 

Exercise 30.6 | Q 12 | Page 47

Write the derivative of f (x) = 3 |2 + x| at x = −3. 

Exercise 30.6 | Q 13 | Page 47

If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 

Exercise 30.6 | Q 14 | Page 47

If f (x) =  \[\log_{x_2}\]write the value of f' (x). 

Exercise 30.7 [Pages 47 - 48]

RD Sharma solutions for Mathematics [English] Class 11 30 Derivatives Exercise 30.7 [Pages 47 - 48]

Exercise 30.7 | Q 1 | Page 47

Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]

  •  \[\frac{3}{2}\] 

  • 1                    

  •  −1

Exercise 30.7 | Q 2 | Page 47

Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 

  •  \[\frac{5}{4}\] 

  • \[\frac{4}{5}\]

  •  1                 

  •  0

Exercise 30.7 | Q 3 | Page 47

Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 

  •  y + 1          

  • y − 1          

  • y   

  •  y2

Exercise 30.7 | Q 4 | Page 48

Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 

  •  150       

  • −50                   

  • −150            

  • 50 

Exercise 30.7 | Q 5 | Page 48

Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 

  • \[- \frac{4x}{\left( x^2 - 1 \right)^2}\]

  • \[- \frac{4x}{x^2 - 1}\]

  • \[\frac{1 - x^2}{4x}\]

  • \[\frac{4x}{x^2 - 1}\] 

Exercise 30.7 | Q 6 | Page 48

Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is

  •  1   

  • \[\frac{1}{2}\] 

  • \[\frac{1}{\sqrt{2}}\]

  • 0

Exercise 30.7 | Q 7 | Page 48

Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 

  • 5050              

  •  5049                 

  • 5051         

  • 50051

Exercise 30.7 | Q 8 | Page 48

Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 

  • \[\frac{1}{100}\] 

  • 100         

  • 50        

Exercise 30.7 | Q 9 | Page 48

Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 

  • −2      

  •  0         

  • \[\frac{1}{2}\]

  • does not exist

Exercise 30.7 | Q 10 | Page 48

Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 

  •  cos 9     

  • sin 9   

  •  0     

  • 1

Exercise 30.7 | Q 11 | Page 48

Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 

  •  1   

  •  0               

  • \[\frac{1}{2}\] 

  • does not exist 

Exercise 30.7 | Q 12 | Page 48

Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 

  • 1            

  • −1 

  • \[\frac{1}{2}\] 

Solutions for 30: Derivatives

Exercise 30.1Exercise 30.2Exercise 30.3Exercise 30.4Exercise 30.5Exercise 30.6Exercise 30.7
RD Sharma solutions for Mathematics [English] Class 11 chapter 30 - Derivatives - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 11 chapter 30 - Derivatives

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC 30 (Derivatives) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 11 chapter 30 Derivatives are Limits of Exponential Functions, Derivative of Slope of Tangent of the Curve, Theorem for Any Positive Integer n, Graphical Interpretation of Derivative, Derive Derivation of x^n, Algebra of Derivative of Functions, Derivative of Polynomials and Trigonometric Functions, Derivative Introduced as Rate of Change Both as that of Distance Function and Geometrically, Intuitive Idea of Derivatives, Introduction of Limits, Introduction to Calculus, Algebra of Limits, Limits of Polynomials and Rational Functions, Introduction of Derivatives, Limits of Trigonometric Functions, Limits of Logarithmic Functions.

Using RD Sharma Mathematics [English] Class 11 solutions Derivatives exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 11 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 30, Derivatives Mathematics [English] Class 11 additional questions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×