English

RD Sharma solutions for Mathematics [English] Class 12 chapter 11 - Differentiation [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 12 chapter 11 - Differentiation - Shaalaa.com
Advertisements

Solutions for Chapter 11: Differentiation

Below listed, you can find solutions for Chapter 11 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.


Exercise 11.01Exercise 11.02Exercise 11.03Exercise 11.04Exercise 11.05Exercise 11.06Exercise 11.07Exercise 11.08Exercise 11.09Exercise 11.10
Exercise 11.01 [Page 17]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.01 [Page 17]

Exercise 11.01 | Q 1 | Page 17

Differentiate the following functions from first principles e−x.

Exercise 11.01 | Q 2 | Page 17

Differentiate the following functions from first principles e3x.

Exercise 11.01 | Q 3 | Page 17

Differentiate the following functions from first principles eax+b.

Exercise 11.01 | Q 4 | Page 17

Differentiate the following functions from first principles ecos x.

Exercise 11.01 | Q 5 | Page 17

Differentiate the following functions from first principles  \[e^\sqrt{2x}\].

Exercise 11.01 | Q 6 | Page 17

Differentiate the following functions from first principles log cos x ?

Exercise 11.01 | Q 7 | Page 17

​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .

Exercise 11.01 | Q 8 | Page 17

Differentiate the following functions from first principles x2ex ?

Exercise 11.01 | Q 9 | Page 17

Differentiate the following functions from first principles log cosec x ?

Exercise 11.01 | Q 10 | Page 17

Differentiate the following functions from first principles sin−1 (2x + 3) ?

Exercise 11.02 [Pages 37 - 38]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.02 [Pages 37 - 38]

Exercise 11.02 | Q 1 | Page 37

Differentiate sin (3x + 5) ?

Exercise 11.02 | Q 2 | Page 37

Differentiate tan2 x ?

Exercise 11.02 | Q 3 | Page 37

Differentiate tan (x° + 45°) ?

Exercise 11.02 | Q 4 | Page 37

Differentiate sin (log x) ?

Exercise 11.02 | Q 5 | Page 37

Differentiate \[e^{\sin} \sqrt{x}\] ?

Exercise 11.02 | Q 6 | Page 37

Differentiate etan x ?

Exercise 11.02 | Q 7 | Page 37

Differentiate sin2 (2x + 1) ?

Exercise 11.02 | Q 8 | Page 37

Differentiate log7 (2x − 3) ?

Exercise 11.02 | Q 9 | Page 37

Differentiate tan 5x° ?

Exercise 11.02 | Q 10 | Page 37

Differentiate `2^(x^3)` ?

Exercise 11.02 | Q 11 | Page 37

Differentiate \[3^{e^x}\] ?

Exercise 11.02 | Q 12 | Page 37

Differentiate logx 3 ?

Exercise 11.02 | Q 13 | Page 37

Differentiate \[3^{x^2 + 2x}\] ?

Exercise 11.02 | Q 14 | Page 37

Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?

Exercise 11.02 | Q 15 | Page 37

Differentiate \[3^{x \log x}\] ?

Exercise 11.02 | Q 16 | Page 37

Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?

Exercise 11.02 | Q 17 | Page 37

Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?

Exercise 11.02 | Q 18 | Page 37

Differentiate (log sin x)?

Exercise 11.02 | Q 19 | Page 37

Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?

Exercise 11.02 | Q 20 | Page 37

Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?

Exercise 11.02 | Q 21 | Page 37

Differentiate \[e^{3 x} \cos 2x\] ?

Exercise 11.02 | Q 22 | Page 37

Differentiate sin(log sin x) ?

Exercise 11.02 | Q 23 | Page 37

Differentiate \[e^{\tan 3 x} \] ?

Exercise 11.02 | Q 24 | Page 37

Differentiate \[e^\sqrt{\cot x}\] ?

Exercise 11.02 | Q 25 | Page 37

Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?

Exercise 11.02 | Q 26 | Page 37

Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?

Exercise 11.02 | Q 27 | Page 37

Differentiate \[\tan \left( e^{\sin x }\right)\] ?

Exercise 11.02 | Q 28 | Page 37

Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?

Exercise 11.02 | Q 29 | Page 37

Differentiate \[\frac{e^x \log x}{x^2}\] ? 

Exercise 11.02 | Q 30 | Page 37

Differentiate \[\log \left( cosec x - \cot x \right)\] ?

Exercise 11.02 | Q 31 | Page 37

Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?

Exercise 11.02 | Q 32 | Page 37

Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?

Exercise 11.02 | Q 33 | Page 37

Differentiate \[\tan^{- 1} \left( e^x \right)\] ?

Exercise 11.02 | Q 34 | Page 37

Differentiate \[e^{\sin^{- 1} 2x}\] ?

Exercise 11.02 | Q 35 | Page 37

Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?

Exercise 11.02 | Q 36 | Page 37

Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?

Exercise 11.02 | Q 37 | Page 37

Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?

Exercise 11.02 | Q 38 | Page 37

Differentiate \[\log \left( \tan^{- 1} x \right)\]? 

Exercise 11.02 | Q 39 | Page 37

Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?

Exercise 11.02 | Q 40 | Page 37

Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?

Exercise 11.02 | Q 41 | Page 37

Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?

Exercise 11.02 | Q 42 | Page 37

Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?

Exercise 11.02 | Q 43 | Page 37

Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?

Exercise 11.02 | Q 44 | Page 37

Differentiate  \[e^x \log \sin 2x\] ?

Exercise 11.02 | Q 45 | Page 37

Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?

Exercise 11.02 | Q 46 | Page 37

Differentiate `log [x+2+sqrt(x^2+4x+1)]`

Exercise 11.02 | Q 47 | Page 37

Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?

Exercise 11.02 | Q 48 | Page 37

Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?

Exercise 11.02 | Q 49 | Page 37

Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?

Exercise 11.02 | Q 50 | Page 37

Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?

Exercise 11.02 | Q 51 | Page 37

Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?

Exercise 11.02 | Q 52 | Page 38

Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?

Exercise 11.02 | Q 53 | Page 38

\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?

Exercise 11.02 | Q 54 | Page 38

Differentiate \[e^{ax} \sec x \tan 2x\] ?

Exercise 11.02 | Q 55 | Page 38

Differentiate \[\log \left( \cos x^2 \right)\] ?

Exercise 11.02 | Q 56 | Page 38

Differentiate \[\cos \left( \log x \right)^2\] ?

Exercise 11.02 | Q 57 | Page 38

Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?

Exercise 11.02 | Q 58 | Page 38

If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?

Exercise 11.02 | Q 59 | Page 38

 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?

Exercise 11.02 | Q 60 | Page 38

If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 

Exercise 11.02 | Q 61 | Page 38

If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 

Exercise 11.02 | Q 62 | Page 38

If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?

Exercise 11.02 | Q 63 | Page 38

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?

Exercise 11.02 | Q 64 | Page 38

If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?

Exercise 11.02 | Q 65 | Page 38

If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?

Exercise 11.02 | Q 66 | Page 38

If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?

Exercise 11.02 | Q 67 | Page 38

If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?

Exercise 11.02 | Q 68 | Page 38

If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?

Exercise 11.02 | Q 69 | Page 38

If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?

Exercise 11.02 | Q 70 | Page 38

If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?

Exercise 11.02 | Q 71 | Page 38

If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?

Exercise 11.02 | Q 72 | Page 38

If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?

Exercise 11.02 | Q 73 | Page 38

If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?

Exercise 11.02 | Q 74 | Page 38

Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?

Exercise 11.03 [Pages 62 - 64]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.03 [Pages 62 - 64]

Exercise 11.03 | Q 1 | Page 62

Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?

Exercise 11.03 | Q 2 | Page 62

Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?

Exercise 11.03 | Q 3 | Page 63

Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?

Exercise 11.03 | Q 4 | Page 63

Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?

Exercise 11.03 | Q 5 | Page 63

Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?

Exercise 11.03 | Q 6 | Page 63

Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?

Exercise 11.03 | Q 7 | Page 63

Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?

Exercise 11.03 | Q 8 | Page 63

Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?

Exercise 11.03 | Q 9 | Page 63

Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?

Exercise 11.03 | Q 10 | Page 63

Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?

Exercise 11.03 | Q 11 | Page 63

Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?

Exercise 11.03 | Q 12 | Page 63

Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?

Exercise 11.03 | Q 13 | Page 63

Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?

Exercise 11.03 | Q 14 | Page 63

Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?

Exercise 11.03 | Q 15 | Page 63

Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?

Exercise 11.03 | Q 16 | Page 63

Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?

Exercise 11.03 | Q 17 | Page 63

Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?

Exercise 11.03 | Q 18 | Page 63

Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?

Exercise 11.03 | Q 19 | Page 63

Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?

Exercise 11.03 | Q 20 | Page 63

Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?

Exercise 11.03 | Q 21 | Page 63

Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?

Exercise 11.03 | Q 22 | Page 63

Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?

Exercise 11.03 | Q 23 | Page 63

Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?

Exercise 11.03 | Q 24 | Page 63

Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?

Exercise 11.03 | Q 25 | Page 63

Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?

Exercise 11.03 | Q 26 | Page 63

Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?

Exercise 11.03 | Q 27 | Page 63

Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?

Exercise 11.03 | Q 28 | Page 63

Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?

Exercise 11.03 | Q 29 | Page 63

 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?

Exercise 11.03 | Q 30 | Page 63

Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?

Exercise 11.03 | Q 31 | Page 64

Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?

Exercise 11.03 | Q 32 | Page 63

Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?

Exercise 11.03 | Q 33 | Page 64

Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?

Exercise 11.03 | Q 34 | Page 64

Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.

Exercise 11.03 | Q 35 | Page 64

If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 

Exercise 11.03 | Q 36 | Page 64

If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 

Exercise 11.03 | Q 37.1 | Page 64

Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]

Exercise 11.03 | Q 37.2 | Page 64

Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]

Exercise 11.03 | Q 38 | Page 64

If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 

Exercise 11.03 | Q 39 | Page 64

If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ? 

Exercise 11.03 | Q 40 | Page 64

If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 

Exercise 11.03 | Q 41 | Page 64

If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?

Exercise 11.03 | Q 42 | Page 64

If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?

Exercise 11.03 | Q 43 | Page 64

If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?

Exercise 11.03 | Q 44 | Page 64

If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?

Exercise 11.03 | Q 45 | Page 64

If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?

Exercise 11.03 | Q 46 | Page 64

If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?

Exercise 11.03 | Q 47 | Page 64

Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?

Exercise 11.03 | Q 48 | Page 64

If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?

Exercise 11.04 [Pages 74 - 75]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.04 [Pages 74 - 75]

Exercise 11.04 | Q 1 | Page 74

Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\]  ?

Exercise 11.04 | Q 2 | Page 74

Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 

Exercise 11.04 | Q 3 | Page 74

Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 

Exercise 11.04 | Q 4 | Page 74

Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 

Exercise 11.04 | Q 5 | Page 74

Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?

Exercise 11.04 | Q 6 | Page 74

Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 

Exercise 11.04 | Q 7 | Page 74

Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 

Exercise 11.04 | Q 8 | Page 74

Find  \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?

 

Exercise 11.04 | Q 9 | Page 74

Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 

Exercise 11.04 | Q 10 | Page 74

Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 

Exercise 11.04 | Q 11 | Page 74

Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 

Exercise 11.04 | Q 12 | Page 74

If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?

Exercise 11.04 | Q 13 | Page 75

If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?

Exercise 11.04 | Q 14 | Page 75

If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?

Exercise 11.04 | Q 15 | Page 75

If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?

Exercise 11.04 | Q 16 | Page 75

If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?

Exercise 11.04 | Q 17 | Page 75

If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?

Exercise 11.04 | Q 18 | Page 75

If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{y}{x}\] ?

Exercise 11.04 | Q 19 | Page 75

If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?

Exercise 11.04 | Q 20 | Page 75

If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?

Exercise 11.04 | Q 21 | Page 75

If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

Exercise 11.04 | Q 22 | Page 75

If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

Exercise 11.04 | Q 23 | Page 75

If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?

Exercise 11.04 | Q 24 | Page 75

If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?

Exercise 11.04 | Q 25 | Page 75

If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?

Exercise 11.04 | Q 26 | Page 75

If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?

Exercise 11.04 | Q 27 | Page 75

If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?

Exercise 11.04 | Q 28 | Page 75

If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

Exercise 11.04 | Q 29 | Page 75

If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 

Exercise 11.04 | Q 30 | Page 75

If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?

Exercise 11.04 | Q 31 | Page 75

If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?

Exercise 11.05 [Pages 88 - 90]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.05 [Pages 88 - 90]

Exercise 11.05 | Q 1 | Page 88

Differentiate \[x^{1/x}\]  with respect to x.

Exercise 11.05 | Q 2 | Page 88

Differentiate \[x^{\sin x}\]  ?

Exercise 11.05 | Q 3 | Page 88

Differentiate \[\left( 1 + \cos x \right)^x\] ?

Exercise 11.05 | Q 4 | Page 88

Differentiate \[x^{\cos^{- 1} x}\] ?

Exercise 11.05 | Q 5 | Page 88

Differentiate \[\left( \log x \right)^x\] ?

Exercise 11.05 | Q 6 | Page 88

Differentiate \[\left( \log x \right)^{\cos x}\] ?

Exercise 11.05 | Q 7 | Page 88

Differentiate \[\left( \sin x \right)^{\cos x}\] ?

Exercise 11.05 | Q 8 | Page 88

Differentiate \[e^{x \log x}\] ?

Exercise 11.05 | Q 9 | Page 88

Differentiate  \[\left( \sin x \right)^{\log x}\] ?

Exercise 11.05 | Q 10 | Page 88

Differentiate \[{10}^{ \log \sin x }\] ?

Exercise 11.05 | Q 11 | Page 88

Differentiate \[\left( \log x \right)^{ \log x }\] ?

Exercise 11.05 | Q 12 | Page 88

Differentiate \[{10}^\left( {10}^x \right)\] ?

Exercise 11.05 | Q 13 | Page 88

Differentiate  \[\sin \left( x^x \right)\] ?

Exercise 11.05 | Q 14 | Page 88

Differentiate \[\left( \sin^{- 1} x \right)^x\] ?

Exercise 11.05 | Q 15 | Page 88

Differentiate \[x^{\sin^{- 1} x}\]  ?

Exercise 11.05 | Q 16 | Page 88

Differentiate \[\left( \tan x \right)^{1/x}\] ?

Exercise 11.05 | Q 17 | Page 88

Differentiate \[x^{\tan^{- 1} x }\]  ?

Exercise 11.05 | Q 18.1 | Page 88

Differentiate  \[\left( x^x \right) \sqrt{x}\] ?

Exercise 11.05 | Q 18.2 | Page 88

Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?

Exercise 11.05 | Q 18.3 | Page 88

Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?

Exercise 11.05 | Q 18.4 | Page 88

Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?

Exercise 11.05 | Q 18.5 | Page 88

Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?

Exercise 11.05 | Q 18.6 | Page 88

Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?

Exercise 11.05 | Q 18.7 | Page 88

Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?

Exercise 11.05 | Q 18.8 | Page 88

Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?

Exercise 11.05 | Q 19 | Page 89

Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 

Exercise 11.05 | Q 20 | Page 89
Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?
Exercise 11.05 | Q 21 | Page 89

find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 

Exercise 11.05 | Q 22 | Page 89

Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 

Exercise 11.05 | Q 23 | Page 89

Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 

Exercise 11.05 | Q 24 | Page 89

Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 

Exercise 11.05 | Q 25 | Page 89

Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?

Exercise 11.05 | Q 26 | Page 89

Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 

Exercise 11.05 | Q 27 | Page 89

Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?

Exercise 11.05 | Q 28 | Page 89

If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 

Exercise 11.05 | Q 29.1 | Page 89

Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?

Exercise 11.05 | Q 29.2 | Page 89

Find \[\frac{dy}{dx}\]  \[y = x^x + \left( \sin x \right)^x\] ?

Exercise 11.05 | Q 30 | Page 89

Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?

Exercise 11.05 | Q 31 | Page 89

Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?

Exercise 11.05 | Q 32 | Page 89

Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?

Exercise 11.05 | Q 33 | Page 89

If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?

Exercise 11.05 | Q 34 | Page 89

If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?

Exercise 11.05 | Q 35 | Page 89

If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?

Exercise 11.05 | Q 36 | Page 89

If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?

Exercise 11.05 | Q 37 | Page 89

If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?

Exercise 11.05 | Q 38 | Page 89

If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?

Exercise 11.05 | Q 39 | Page 89

If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?

Exercise 11.05 | Q 40 | Page 89

If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?

Exercise 11.05 | Q 41 | Page 89

If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?

Exercise 11.05 | Q 42 | Page 89

If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?

Exercise 11.05 | Q 43 | Page 89

If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?

Exercise 11.05 | Q 44 | Page 90

If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?

Exercise 11.05 | Q 45 | Page 90

If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?

Exercise 11.05 | Q 46 | Page 90

If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 

Exercise 11.05 | Q 47 | Page 90

If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 

Exercise 11.05 | Q 48 | Page 90

If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 

Exercise 11.05 | Q 49 | Page 90

If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?

Exercise 11.05 | Q 50 | Page 90

If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 

Exercise 11.05 | Q 51 | Page 90

Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 

Exercise 11.05 | Q 52 | Page 90

If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?

Exercise 11.05 | Q 53 | Page 90

If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?

Exercise 11.05 | Q 54 | Page 90

If  \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

 

Exercise 11.05 | Q 55 | Page 90

If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?

Exercise 11.05 | Q 56 | Page 90

If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 

Exercise 11.05 | Q 57 | Page 90
\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Exercise 11.05 | Q 58 | Page 90
\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?
Exercise 11.05 | Q 59 | Page 90
\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?
Exercise 11.05 | Q 60 | Page 90
\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 

Exercise 11.05 | Q 61 | Page 90
\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:
  • `y (alpha/(alpha-x) + beta/(beta-x) + gamma/(gamma-x))`

  • `y/x (alpha/(1/(x-alpha)) + beta/(1/(x-beta)) + gamma/(1/(x-gamma)))`

  • `y (alpha/(1/(x-alpha)) + beta/(1/(x-beta)) + gamma/(1/(x-gamma)))`

  • `y/x ((alpha/x)/(1/(x-alpha)) + (beta/x)/(1/(x-beta)) + (gamma/x)/(1/(x-gamma)))`

Exercise 11.06 [Pages 98 - 99]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.06 [Pages 98 - 99]

Exercise 11.06 | Q 1 | Page 98

If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?

Exercise 11.06 | Q 2 | Page 98

If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?

Exercise 11.06 | Q 3 | Page 98

If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 

Exercise 11.06 | Q 4 | Page 98

If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 

Exercise 11.06 | Q 5 | Page 98

\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?

Exercise 11.06 | Q 6 | Page 98

If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 

Exercise 11.06 | Q 7 | Page 99

If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 

Exercise 11.06 | Q 8 | Page 99

If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?

 

Exercise 11.07 [Pages 103 - 104]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.07 [Pages 103 - 104]

Exercise 11.07 | Q 1 | Page 103

Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?

Exercise 11.07 | Q 2 | Page 103

Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?

Exercise 11.07 | Q 3 | Page 103

If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?

Exercise 11.07 | Q 4 | Page 103

Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?

Exercise 11.07 | Q 5 | Page 103

Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?

Exercise 11.07 | Q 6 | Page 103

Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?

Exercise 11.07 | Q 7 | Page 103

Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?

Exercise 11.07 | Q 8 | Page 103

Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?

Exercise 11.07 | Q 9 | Page 103

Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?

Exercise 11.07 | Q 10 | Page 103

Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?

Exercise 11.07 | Q 11 | Page 103

Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?

Exercise 11.07 | Q 12 | Page 103

Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?

Exercise 11.07 | Q 13 | Page 103

Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 

Exercise 11.07 | Q 14 | Page 103

If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?

Exercise 11.07 | Q 15 | Page 103

If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?

Exercise 11.07 | Q 16 | Page 103

If \[x = \cos t \text{ and y }  = \sin t,\] prove that  \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?

 

Exercise 11.07 | Q 17 | Page 103

If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 

Exercise 11.07 | Q 18 | Page 103
If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 

Exercise 11.07 | Q 19 | Page 103

If  \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?

 

Exercise 11.07 | Q 20 | Page 103

If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?

Exercise 11.07 | Q 21 | Page 103

If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?

Exercise 11.07 | Q 22 | Page 104

If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?

 

Exercise 11.07 | Q 23 | Page 104

If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 

Exercise 11.07 | Q 24 | Page 104

If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?

Exercise 11.07 | Q 25 | Page 104

\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?

Exercise 11.07 | Q 26 | Page 104

If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?

Exercise 11.07 | Q 27 | Page 104
\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?
Exercise 11.07 | Q 28 | Page 104

Write the derivative of sinx with respect to cos x ?

Exercise 11.08 [Pages 112 - 113]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.08 [Pages 112 - 113]

Exercise 11.08 | Q 1 | Page 112

Differentiate x2 with respect to x3

Exercise 11.08 | Q 2 | Page 112

Differentiate log (1 + x2) with respect to tan−1 x ?

Exercise 11.08 | Q 3 | Page 112

Differentiate (log x)x with respect to log x ?

Exercise 11.08 | Q 4.1 | Page 112

Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\]  ?

 

Exercise 11.08 | Q 4.2 | Page 112

Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?

Exercise 11.08 | Q 5.1 | Page 112
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?
Exercise 11.08 | Q 5.2 | Page 112

Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?

Exercise 11.08 | Q 5.3 | Page 112

Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?

Exercise 11.08 | Q 6 | Page 112

Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?

Exercise 11.08 | Q 7.1 | Page 112

Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?

Exercise 11.08 | Q 7.2 | Page 112

Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?

Exercise 11.08 | Q 8 | Page 112

Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?

Exercise 11.08 | Q 9 | Page 112

Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?

Exercise 11.08 | Q 10 | Page 113

Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?

Exercise 11.08 | Q 11 | Page 113

Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?

Exercise 11.08 | Q 12 | Page 113

Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?

Exercise 11.08 | Q 13 | Page 113

Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?

Exercise 11.08 | Q 14 | Page 113

Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?

Exercise 11.08 | Q 15 | Page 113

Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?

Exercise 11.08 | Q 16 | Page 113

Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 

Exercise 11.08 | Q 17 | Page 113

Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?

Exercise 11.08 | Q 18 | Page 113

\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 

Exercise 11.08 | Q 19 | Page 113

Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?

Exercise 11.08 | Q 20 | Page 113

Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?

Exercise 11.09 [Pages 117 - 118]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.09 [Pages 117 - 118]

Exercise 11.09 | Q 1 | Page 117

If f (x) = loge (loge x), then write the value of `f' (e)` ?

Exercise 11.09 | Q 2 | Page 117

If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?

Exercise 11.09 | Q 3 | Page 117

If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?

Exercise 11.09 | Q 4 | Page 117

If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 

Exercise 11.09 | Q 5 | Page 117

If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?

Exercise 11.09 | Q 6 | Page 117

Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.

Exercise 11.09 | Q 7 | Page 117

If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?

Exercise 11.09 | Q 8 | Page 117

If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?

Exercise 11.09 | Q 9 | Page 117

If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?

Exercise 11.09 | Q 10 | Page 118

If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?

Exercise 11.09 | Q 11 | Page 118

If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?

Exercise 11.09 | Q 12 | Page 118

If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?

Exercise 11.09 | Q 13 | Page 118

If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?

Exercise 11.09 | Q 14 | Page 118

If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?

Exercise 11.09 | Q 15 | Page 118

If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?

Exercise 11.09 | Q 16 | Page 116

If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?

Exercise 11.09 | Q 17 | Page 118

If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?

Exercise 11.09 | Q 18 | Page 118

If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 

Exercise 11.09 | Q 19 | Page 118

If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?

Exercise 11.09 | Q 20 | Page 118

If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?

Exercise 11.09 | Q 21 | Page 118

If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?

Exercise 11.09 | Q 22 | Page 118

If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?

Exercise 11.09 | Q 23 | Page 118

If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?

Exercise 11.09 | Q 24 | Page 118

If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?

Exercise 11.09 | Q 25 | Page 118

If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 

Exercise 11.09 | Q 26 | Page 118

If f (x) is an even function, then write whether `f' (x)` is even or odd ?

Exercise 11.09 | Q 27 | Page 118

If f (x) is an odd function, then write whether `f' (x)` is even or odd ?

Exercise 11.09 | Q 28 | Page 118

If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?

Exercise 11.10 [Pages 119 - 122]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.10 [Pages 119 - 122]

Exercise 11.10 | Q 1 | Page 119

If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .

  • 0

  • 1

  • 1/e

  • 1/2e

Exercise 11.10 | Q 2 | Page 119

The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .

  • \[\frac{x}{\log x}\]

  • \[\frac{\log x}{x}\]

  • \[\left( x \log x \right)^{- 1}\]

  • none of these

Exercise 11.10 | Q 3 | Page 119

The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .

  • (2/3)1/2

  • (1/3)1/2

  • 31/2

  • 61/2

Exercise 11.10 | Q 4 | Page 119

Differential coefficient of sec(tan−1 x) is ______.

  • `x/(1 + x^2)`

  • `x sqrt(1 + x^2)`

  • `1/sqrt(1 + x^2)`

  • `x/sqrt(1 + x^2)`

Exercise 11.10 | Q 5 | Page 119

If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .

  • − 1/4

  • − 1/2

  • 1/4

  • 1/2

Exercise 11.10 | Q 6 | Page 119

If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .

  • \[\left( 1 + \frac{1}{x} \right)^x \left( 1 + \frac{1}{x} \right) - \frac{1}{x + 1}\]

  • \[\left( 1 + \frac{1}{x} \right)^x \log \left( 1 + \frac{1}{x} \right)\]

  • \[\left( x + \frac{1}{x} \right)^x \left\{ \log \left( x + 1 \right) - \frac{x}{x + 1} \right\}\]

  • \[\left( x + \frac{1}{x} \right)^x \left\{ \log \left( 1 + \frac{1}{x} \right) + \frac{1}{x + 1} \right\}\]

Exercise 11.10 | Q 7 | Page 119

If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .

  • \[\frac{1 + x}{1 + \log x}\]

  • \[\frac{1 - \log x}{1 + \log x}\]

  • not defined

  • \[\frac{\log x}{\left( 1 + \log x \right)^2}\]

Exercise 11.10 | Q 8 | Page 119

Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .

  • \[f'\left( \frac{1}{2} \right) = f'\left( - \frac{1}{2} \right)\]

  • \[f\left( \frac{1}{2} \right) = - f'\left( - \frac{1}{2} \right)\]

  • \[f\left( - \frac{1}{2} \right) = f\left( - \frac{1}{2} \right)\]

  • \[f\left( \frac{1}{2} \right) = f'\left( - \frac{1}{2} \right)\]

Exercise 11.10 | Q 9 | Page 119

If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .

  • \[\tan^2 \theta\]

  • \[\sec^2 \theta\]

  • \[\sec \theta\]

  • \[\left| \sec \theta \right|\]

Exercise 11.10 | Q 10 | Page 120

If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .

  • \[- \frac{2}{1 + x^2}\]

  • \[\frac{2}{1 + x^2}\]

  • \[\frac{1}{2 - x^2}\]

  • \[\frac{2}{2 - x^2}\]

Exercise 11.10 | Q 11 | Page 120

The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]

  • does not exist

  • 0

  • 1/2

  • 1/3

Exercise 11.10 | Q 12 | Page 120

For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .

  • 1/2

  • 1

  • -1

  • 2

Exercise 11.10 | Q 13 | Page 120

If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .

  • 2

  • -2

  • 1

  • -1

Exercise 11.10 | Q 14 | Page 120

Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .

  • 1/2

  • x

  • \[\frac{1 - x^2}{x^2 - 4}\]

  • 1

Exercise 11.10 | Q 15 | Page 120

\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .

  • 1/2

  • -1/2

  • 1

  • -1

Exercise 11.10 | Q 16 | Page 120
\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .
  • \[\frac{x^2 - 1}{x^2 - 4}\]

  • 1

  • \[\frac{x^2 + 1}{x^2 - 4}\]

  • \[e^x \frac{x^2 - 1}{x^2 - 4}\]

Exercise 11.10 | Q 17 | Page 120

If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .

  • \[\frac{\sin x}{2 y - 1}\]

  • \[\frac{\sin x}{1 - 2 y}\]

  • \[\frac{\cos x}{1 - 2 y}\]

  • \[\frac{\cos x}{2 y - 1}\]

Exercise 11.10 | Q 18 | Page 120

If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .

  • \[- \frac{y}{x}\]

  • \[\frac{3 \sin \left( xy \right) + 4 \cos \left( xy \right)}{3 \cos \left( xy \right) - 4 \sin \left( xy \right)}\]

  • \[\frac{3 \cos \left( xy \right) + 4 \sin \left( xy \right)}{4 \cos \left( xy \right) - 3 \sin \left( xy \right)}\]

  • none of these

Exercise 11.10 | Q 19 | Page 120

If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .

  • \[\frac{\sin a}{\sin a \sin^2 \left( a + y \right)}\]

  • \[\frac{\sin^2 \left( a + y \right)}{\sin a}\]

  • \[\sin a \sin^2 \left( a + y \right)\]

  • \[\frac{\sin^2 \left( a - y \right)}{\sin a}\]

Exercise 11.10 | Q 20 | Page 121

The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .

  • `2`

  • \[\frac{1}{2 \sqrt{1 - x^2}}\]

  • \[2/x\]

  • \[1 - x^2\]

Exercise 11.10 | Q 21 | Page 121

If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .

  • \[1 \text { for x } < - 3\]

  • \[- 1\text {  for x} < - 3\]

  • \[1\text {  for all } x \in R\]

  • none of these

Exercise 11.10 | Q 22 | Page 121

If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .

  • \[- 2x + 9\text {  for all } x \in R\]

  • \[2x - 9 \text { if }4 < x < 5\]

  • \[- 2x + 9, \text { if }4 < x < 5\]

  • none of these

Exercise 11.10 | Q 23 | Page 121

If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .

  • 1

  • -1

  • 0

  • none of these

Exercise 11.10 | Q 24 | Page 121

If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .

  • 1

  • -1

  • 0

  • none of these

Exercise 11.10 | Q 25 | Page 121

If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .

  • 1

  • 0

  • \[x^{l + m + n}\]

  • none of these

Exercise 11.10 | Q 26 | Page 121

If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .

  • 1

  • \[\left( a + b + c \right)^{x^{a + b + c - 1}}\]

  • 0

  • none of these

Exercise 11.10 | Q 27 | Page 121

If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .

  • \[\frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}\]

  • \[\frac{y^2}{x^2}\sqrt{\frac{1 - y^6}{1 + x^6}}\]

  • \[\frac{x^2}{y^2}\sqrt{\frac{1 - x^6}{1 - y^6}}\]

  • none of these

Exercise 11.10 | Q 28 | Page 121

If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .

  • 1

  • 0

  • `1/2`

Exercise 11.10 | Q 29 | Page 121

If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .

  • \[\frac{x^2 - y^2}{x^2 + y^2}\]

  • `y/x`

  • `x/y`

  • none of these

Exercise 11.10 | Q 30 | Page 121

If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .

  • \[\frac{\cos^2 \left( a + y \right)}{\cos a}\]

  • \[\frac{\cos a}{\cos^2 \left( a + y \right)}\]

  • \[\frac{\sin^2 y}{\cos a}\]

  • none of these

Exercise 11.10 | Q 31 | Page 122

If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .

  • \[\frac{4 x^3}{1 - x^4}\]

  • \[- \frac{4x}{1 - x^4}\]

  • \[\frac{1}{4 - x^4}\]

  • \[- \frac{4 x^3}{1 - x^4}\]

Exercise 11.10 | Q 32 | Page 122

If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .

  • \[\frac{\cos x}{2y - 1}\]

  • \[\frac{\cos x}{1 - 2y}\]

  • \[\frac{\sin x}{1 - 2y}\]

  • \[\frac{\sin x}{2y - 1}\]

Exercise 11.10 | Q 33 | Page 122

If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .

  • `1/2`

  • 0

  • 1

  • none of these

Solutions for 11: Differentiation

Exercise 11.01Exercise 11.02Exercise 11.03Exercise 11.04Exercise 11.05Exercise 11.06Exercise 11.07Exercise 11.08Exercise 11.09Exercise 11.10
RD Sharma solutions for Mathematics [English] Class 12 chapter 11 - Differentiation - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 12 chapter 11 - Differentiation

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 11 (Differentiation) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 12 chapter 11 Differentiation are Maximum and Minimum Values of a Function in a Closed Interval, Maxima and Minima, Simple Problems on Applications of Derivatives, Graph of Maxima and Minima, Approximations, Tangents and Normals, Increasing and Decreasing Functions, Rate of Change of Bodies or Quantities, Introduction to Applications of Derivatives.

Using RD Sharma Mathematics [English] Class 12 solutions Differentiation exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 11, Differentiation Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×