Advertisements
Online Mock Tests
Chapters
2: Functions
3: Binary Operations
4: Inverse Trigonometric Functions
5: Algebra of Matrices
6: Determinants
7: Adjoint and Inverse of a Matrix
8: Solution of Simultaneous Linear Equations
9: Continuity
10: Differentiability
11: Differentiation
12: Higher Order Derivatives
13: Derivative as a Rate Measurer
14: Differentials, Errors and Approximations
15: Mean Value Theorems
16: Tangents and Normals
17: Increasing and Decreasing Functions
18: Maxima and Minima
19: Indefinite Integrals
▶ 20: Definite Integrals
21: Areas of Bounded Regions
22: Differential Equations
23: Algebra of Vectors
24: Scalar Or Dot Product
25: Vector or Cross Product
26: Scalar Triple Product
27: Direction Cosines and Direction Ratios
28: Straight Line in Space
29: The Plane
30: Linear programming
31: Probability
32: Mean and Variance of a Random Variable
33: Binomial Distribution
![RD Sharma solutions for Mathematics [English] Class 12 chapter 20 - Definite Integrals RD Sharma solutions for Mathematics [English] Class 12 chapter 20 - Definite Integrals - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
Advertisements
Solutions for Chapter 20: Definite Integrals
Below listed, you can find solutions for Chapter 20 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.
RD Sharma solutions for Mathematics [English] Class 12 20 Definite Integrals Exercise 20.1 [Pages 16 - 18]
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following definite integrals:
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following definite integral:
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
RD Sharma solutions for Mathematics [English] Class 12 20 Definite Integrals Exercise 20.2 [Pages 38 - 40]
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
RD Sharma solutions for Mathematics [English] Class 12 20 Definite Integrals Exercise 20.3 [Pages 55 - 56]
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
RD Sharma solutions for Mathematics [English] Class 12 20 Definite Integrals Exercise 20.4 [Page 61]
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
RD Sharma solutions for Mathematics [English] Class 12 20 Definite Integrals Exercise 20.5 [Pages 94 - 96]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate the following integral:
`int_0^(2a)f(x)dx`
Evaluate :
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f(2a − x) = −f(x), prove that
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f is an integrable function, show that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
If f(x) is a continuous function defined on [−a, a], then prove that
Prove that:
RD Sharma solutions for Mathematics [English] Class 12 20 Definite Integrals Exercise 20.6 [Pages 110 - 111]
Evaluate the following integrals as limit of sums:
RD Sharma solutions for Mathematics [English] Class 12 20 Definite Integrals Very Short Answers [Pages 115 - 116]
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Solve each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Write the coefficient a, b, c of which the value of the integral
Evaluate :
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
RD Sharma solutions for Mathematics [English] Class 12 20 Definite Integrals MCQ [Pages 117 - 120]
π/2
π/4
π/6
π/8
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
0
1/2
2
3/2
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
- \[\frac{\pi^2}{4}\]
- \[\frac{\pi^2}{2}\]
- \[\frac{3 \pi^2}{2}\]
\[\frac{\pi^2}{3}\]
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
0
2
8
4
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
0
π/2
π/4
none of these
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
log 2 − 1
log 2
log 4 − 1
− log 2
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
2
1
π/4
π2/8
- \[\log\left( \frac{2}{3} \right)\]
- \[\log\left( \frac{3}{2} \right)\]
- \[\log\left( \frac{3}{4} \right)\]
- \[\log\left( \frac{4}{3} \right)\]
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
- \[\frac{1}{3} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
- \[\frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
- \[\sqrt{3} \tan^{- 1} \left( \sqrt{3} \right)\]
- \[2\sqrt{3} \tan^{- 1} \sqrt{3}\]
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
- \[\frac{\pi}{2}\]
\[\frac{\pi}{2} - 1\]
- \[\frac{\pi}{2} + 1\]
π + 1
None of these
\[\frac{\pi}{\sqrt{a^2 - b^2}}\]
- \[\frac{\pi}{ab}\]
\[\frac{\pi}{a^2 + b^2}\]
(a + b) π
π/3
π/6
π/12
π/2
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
- \[\frac{\pi}{60}\]
- \[\frac{\pi}{20}\]
- \[\frac{\pi}{40}\]
- \[\frac{\pi}{80}\]
1
e − 1
e + 1
0
- \[\frac{\pi}{12}\]
- \[\frac{\pi}{6}\]
- \[\frac{\pi}{4}\]
- \[\frac{\pi}{3}\]
\[\frac{\pi}{2}\]
\[\frac{2\pi}{3}\]
- \[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]
- \[\frac{\pi}{2} + \log\left( 2\sqrt{2} \right)\]
- \[\frac{\pi}{6} + \log\left( 2\sqrt{2} \right)\]
\[\frac{\pi}{3} + \log\left( 2\sqrt{2} \right)\]
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
- \[\frac{\pi}{2}\]
- \[\frac{\pi}{4}\]
- \[\frac{\pi}{6}\]
- \[\frac{\pi}{3}\]
1
2
− 1
− 2
- \[\frac{ \pi}{4}\]
- \[\frac{\pi}{3}\]
- \[\frac{\pi}{2}\]
π
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
1
e − 1
0
− 1
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
- \[\frac{\pi}{2}\]
- \[\frac{1}{2}\]
- \[\frac{\pi}{4}\]
1
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
4a2
0
2a2
none of these
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
- \[\frac{\pi^4}{2}\]
- \[\frac{\pi^4}{4}\]
0
none of these
loge 3
- \[\log_e \sqrt{3}\]
- \[\frac{1}{2}\log\left( - 1 \right)\]
log (−1)
−2
2
0
4
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
- \[\frac{1}{3 \ln x}\]
- \[\frac{1}{3 \ln x} - \frac{1}{2 \ln x}\]
(ln x)−1 x (x − 1)
- \[\frac{3 x^2}{\ln x}\]
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
- \[9 \left( \frac{\pi}{2} \right)^9\]
- \[10 \left( \frac{\pi}{2} \right)^9\]
- \[\left( \frac{\pi}{2} \right)^9\]
- \[9 \left( \frac{\pi}{2} \right)^8\]
`15/16`
`3/16`
`-3/16`
`-16/3`
- \[\ln\left( \frac{1}{3} \right)\]
- \[\ln\left( \frac{2}{3} \right)\]
- \[\ln\left( \frac{3}{2} \right)\]
- \[\ln\left( \frac{4}{3} \right)\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
4
2
−2
0
0
1
π/2
π/4
0
π
π/2
π/4
π/4
π/2
π
1
π
π/2
0
2π
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
π/4
π/8
π/2
0
π ln 2
−π ln 2
0
\[- \frac{\pi}{2}\ln 2\]
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
- \[2 \int\limits_0^a f\left( x \right) dx\]
0
\[\int\limits_0^a f\left( x \right) dx + \int\limits_0^a f\left( 2a - x \right) dx\]
- \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^{2a} f\left( 2a - x \right) dx\]
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
- \[\frac{a + b}{2} \int\limits_a^b f\left( b - x \right) dx\]
- \[\frac{a + b}{2} \int\limits_a^b f\left( b + x \right) dx\]
- \[\frac{b - a}{2} \int\limits_a^b f\left( x \right) dx\]
- \[\frac{b + a}{2} \int\limits_a^b f\left( x \right) dx\]
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
1
0
−1
π/4
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
2
- \[\frac{3}{4}\]
0
−2
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
0
2
π
1
RD Sharma solutions for Mathematics [English] Class 12 20 Definite Integrals Revision Exercise [Pages 121 - 123]
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Solutions for 20: Definite Integrals
![RD Sharma solutions for Mathematics [English] Class 12 chapter 20 - Definite Integrals RD Sharma solutions for Mathematics [English] Class 12 chapter 20 - Definite Integrals - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
RD Sharma solutions for Mathematics [English] Class 12 chapter 20 - Definite Integrals
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 20 (Definite Integrals) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 12 chapter 20 Definite Integrals are Definite Integrals, Integrals of Some Particular Functions, Some Properties of Indefinite Integral, Integration Using Trigonometric Identities, Introduction of Integrals, Evaluation of Definite Integrals by Substitution, Properties of Definite Integrals, Methods of Integration: Integration by Substitution, Integration as an Inverse Process of Differentiation, Geometrical Interpretation of Indefinite Integrals, Methods of Integration: Integration Using Partial Fractions, Methods of Integration: Integration by Parts, Fundamental Theorem of Calculus, Indefinite Integral Problems, Comparison Between Differentiation and Integration, Indefinite Integral by Inspection, Definite Integral as the Limit of a Sum, Evaluation of Simple Integrals of the Following Types and Problems.
Using RD Sharma Mathematics [English] Class 12 solutions Definite Integrals exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 20, Definite Integrals Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.